MEMS Energy Harvesting: Enabling Wireless Sensor Networks for Demand Response Applications

ETD Workshop
September 18, 2008

Lindsay Miller, Nathan Emley, Padraic Shafer
In case you’re about to check email for 20 minutes, remember these 4 points:

- MEMS energy harvesting is enabling technology for wireless sensor nodes
 - Provides replenishable power
 - Achieves size reductions
 - Reduces required maintenance

- Current prototype has made good progress, culminating in successful actuation of energy harvesting device

- 1-10 µW/cm³ power output predicted from device

- First prototype costs ~ $16/chip, predicted to fall to ~ $1/chip with mass production
Motivation for Energy Harvesting

Goal: Use demand response to achieve energy efficiency & cost savings for consumer & utility.

WSNs in commercial and residential buildings (& manufacturing sites) could meet these goals.

Current WSN nodes are limited:
→ Bulky
→ High-maintenance
→ Expensive

solution:

MEMS Energy harvesting is
→ Small size
→ Low maintenance
→ Potential cost savings
Many Ways to Harvest Energy...

- Solar
- Wind
- Fluid flow
- Pressure gradient
- Temperature gradient
- Vibration – buildings, machinery, appliances
Piezoelectric Energy Harvesting

Piezoelectric Actuator: Deflects when a voltage is applied

Piezoelectric Sensor: Produces voltage when deflected (energy harvesting)

\[P = \frac{1}{R} \left[\frac{c_p d_{31} t_p S_1}{\varepsilon} \right]^2 \]

- \(P \): power
- \(S \): strain
- \(d_{31} \): piezo coefficient
- \(c_p \): elastic modulus
- \(t_p \): thickness
- \(R \): resistance
- \(\varepsilon \): permittivity

Power \(\sim \) Strain^2
Progress on Vibration Energy Harvesting

- Sol-gel PZT film improvements
- Successful fabrication of devices with sol-gel PZT active layer
- Successful actuation of those devices
- Manufacturing scale-up: chip to wafer scale
- Next: measure voltage output of devices
PZT Crystallography Measurements

First generation

Third generation:
• reduced pyrochlore
• better (111) ordering

Pyrochlore PZT
Pt (111)
Si (002)
PZT (211)
PZT (110)
PZT (111)
PZT Morphology

Initial films were porous and unknown crystallized layers lead to film delamination.

- Film porosity
- Crystallized underlayers
- Ti/Pt
- PZT
- Adhesion problems

Careful control of substrate cooling after pyrolysis and slower ramp times during crystallization lead to much improved PZT morphologies.

- Reduced porosity with no unknown layers
- Good, contiguous columnar growth between subsequent PZT spins.
PZT Piezoelectric Measurements

- Increased piezoelectric response with improved PZT

First generation:
- Low d_{33}
- Asymmetric and offset hysteresis

Third generation:
- Higher d_{33}
- Much more symmetric hysteresis
- Consistent response between scans

Piezoelectric coefficient vs. Voltage

- ~25 pm/V

Out-of-plane Piezoelectric Hysteresis, Sample ID: LMM6D(01)
- 600-nm PZT / Pt / Ti / SiO₂ / Si
- ~45 pm/V
PZT Ferroelectric Measurements

- Increased ferroelectric behavior with improved PZT processing.

First generation:
- Low remnant polarization P_r

Third generation:
- Higher P_r
- Reproducible polarization
First Generation Prototype

Array and isolated rectangular cantilevers

Array of trapezoidal cantilevers

Simplified deflection test setup: movie

Microscope Objective

Adjust Focus

V_{AC} Source

800 \mu m

525 \mu m
Current & Expected Cost Estimate

- Current cost/wafer
 - Mat’ls $174 + Outsourcing $100 + Microlab fees $2385 + Labor $350 = $3009/wafer
 - 80 chips/wafer = $37/chip for 4”
 - 180 chips/wafer = $16/chip for 6”

- Future cost estimate: learning curve eqn
 - $Y = a X^{-b} = ($16/part) (1E6 parts made)^{-0.20}$
 - $Y = $1/part after 1 million are made

Expect Power Output: 1 - 10 µW/cm³

Test as sensor (harvester) this month:
- Vibration input
- Air flow input

Integrate components:
- Energy generation
- Energy storage
- Sensor
- Radio

Fabricate 2nd generation device:
- Improve power output

Simplified voltage output test setup

Voltage vs time

Shaker

Input Vibration
Key Take-Aways

- MEMS energy harvesting is enabling technology for wireless sensor nodes
 - Provides replenishable power
 - Achieves size reductions
 - Reduces required maintenance

- Current prototype has made good progress, culminating in successful actuation of energy harvesting device

- 1-10 µW/cm³ power output predicted from device

- First prototype costs ~ $16/chip, predicted to fall to ~ $1/chip with mass production
What is Sol-gel PZT?

Lead Acetate Trihydrate: $Pb(CH_3CO_2)_23H_2O$

Zirconium n-Propoxide: $Zr(C_3H_7O)_4$

Titanium iso-Propoxide: $Ti[(CH_3)_2CHO]_4$

Plus Solvents, Dilutants, Catalysts