Printed Energy Storage Devices

Christine C. Ho¹, Prof. James W. Evans¹ and Prof. Paul K. Wright²

¹Material Science and Engineering, University of California Berkeley, Berkeley, CA

²Mechanical Engineering, University of California Berkeley, Berkeley, CA

Microbattery Design

Generic Battery

Gel Electrolyte

Liquid swells polymer to form gel electrolyte

Fabrication: Dispenser Printing

Continuous Printing

Drop on Demand

Dispenser printing:

- Capable of 5-300 μm size factors
- Large viscosity range (100-10000 cP)
- Ambient temperature process
- Low waste
- Fast, scalable, economical
- Continuous assembly processing

California Energy Commission - Public Interest Energy Research Program **Printed Battery** Microbattery cross-section electrons Zinc anode zinc Gel Electrolyte (mechanically rigid) gel electrolyte Device Metal oxide cathode MnO₂ Typical discharge potential Potential (V) 0.5 50 100 % Depth of Discharge "Research Powers the Future"

Battery Performance

ner
PUBLIC INTEREST ENERGY RESEARCH "Research Powers the Future"

Current microbattery performance					
Capacity	Energy Density	Operating Voltage			
1 mAh/cm ²	1.5 mWh/cm ² 150 mWh/cm ³ 130 Wh/kg	1 -2 V			

Printed electrochemical capacitors

carbon electrode gel electrolyte carbon electrode

carbon electrode

Capacitor performance

Charge and Discharge Potentials for 1 mA

Current electrochemical capacitor performance					
Capacitance	Max. Power	Energy Density	Operating Voltage		
100 mF/cm ²	600 µW/cm ² 60 mW/cm ³ 50 W/kg	10 μW-hr/cm ² 1 mW-hr/cm ³ 1 W-hr/kg	0 – 2 V		

"Printing on Green"

Thin and flexible displays

Thin, flexible displays need complimentary thin, flexible power source

digital media refrigerator

Printed Media

Printable Batteries

Battery deposition can be incorporated into the automated printing process line

Print media advertisement

Large-scale energy storage

~ 2,600 sq. ft

Printed Energy Storage Devices

- Fully printed energy storage devices (batteries and electrochemical capacitors) were fabricated
- Direct write dispenser printing is a flexible tool that can be useful for tailoring energy storage devices to provide optimal performance for a given application.
- Implementation and testing of printed energy storage devices is underway
- Acknowledgements: California Energy Commission, Delta Electronics,
 Berkeley Manufacturing Institute and Berkeley Wireless Research Center,
 Center for Information Technology Research in the Interest of Society

For more information, contact: christine.c.ho@berkeley.edu

~ 2,600 sq. ft

Costs

Newsprint costs ~ \$0.05/sq. meter

A square meter of printed battery stores 15 W

Component	\$/sq. meter	
Zinc	0.65	
MnO ₂	0.26	
Organics	0.20	
Collector/substrate	0.10	
Printing	0.20	
TOTAL	\$1.51 = \$101/kWh	

http://www.electricitystorage.org/site/technologies/

torage capacity as a function of discharge current

Device leakage with respect to cell voltage

