ActiveRFID: Towards a Self-Powered Wireless Sensing Platform

Mervin John, Jesse Richmond, Louis Alarcon, Wen Li, Tsung-Te Liu, Wenting Zhou, Kimiya Hajkazemshirazi, Kenichi Agawa, Michael Mark, Massimo Alioto, Seth Sanders, Jan Rabaey

Wireless Sensing – Today

- Wireless sensor networks:
 - Cost, size and power consumption goals for single devices within technology reach

 Communication distances from cm's to 10's of meters

Orawbacks:

Energy still a major issue

UCB PicoCube

California Energy Commission - Public Interest Energy Research Program

"Self - Contained" Active RFID

- Combines advantages of WSN & passive RFID tags:
- With power source, enable interrogation from distances >10m
- Compatible with existing RFID protocols
- Easy deployment, low cost, secure...
- Opens the door for new applications:
- Enables querying for portable mobile devices (e.g. cell phone) or from a deployed network (WiFi)
- Tag is self-contained, harvesting energy from solar cell.

Specifications (Target)

- Fully integrated
- Postage stamp size
- Communication range >10 m
- Datarate of 100 kbps
- Compatible with RFID link and MAC specification
- Can operate indefinitely (for 24 hours/day) from single solar cell average power dissipation on the order of μWs

Enables querying from portable mobile devices (e.g. cell phones), or from a deployed network

Powering the Active RFID

- Self-powered Active RFID Tag
 - Self-contained (postage stamp footprint but only mm's thick)
 - Fully integrated IC (single die)
 - Small solar cell harvests enough energy for 24 hour operation

150 mWh/cm³

- 2cmx1cm
- **10μW** avg (Indoor)
- $V_{oc} = 2.4V$, $I_{sc} = 10uA$

Printed Battery

- 1cmx1cm
- V_{bat} ~ **1.1-1.8V**
- Integration w/ substrate

Loads (on Single Die)

- 50 μW RX
- 1mW TX
- **0.5V** Logic
- On-chip power management

System Power Modes

3 orders of magnitude difference within power!

Integrated Power Management

On-Chip Integrated Caps

- ~0.3mm^2
- Multi-topology for coarse regulation
- Multiple cells interleaved to reduce clock ripple

Control Logic

- Regulation Scheme
- Dynamic frequency & switch Scaling

Multiple Supply Rails

500mV V_{dd}
Ripple, Current specs vary

Multi-Mode Operation

- Blocks turned off to reduce leakage/ standby current
- Wide output loads (3uA->100uA->10mA)

Analog Blocks

- Voltage & Current references
- Low-dropout regulator for finer regulation

Chip Layout and Floorplan

Chip size: 2mm x 2mm

Utilizes full-custom layout and design for the radios and power, generated standard cells for digital.

Sent to Fab: May 2010

Return from Fab: Sept 2010

2 mm

Hot off the Press: Chip Die Photo

2 mm

California Energy Commission - Public Interest Energy Research Program

We have developed a ActiveRFID Platform

- Enables small active RFID nodes powered purely by energy scavenging with less 10 uW of average power
- Are easy to deploy and can use existing infrastructure
- Can communicate over more than 10 m indoors
- Fully integrated design contains all power management and communication circuits
- Testing underway

Mervin John (mervin@eecs.berkeley.edu)

Jesse Richmond, Louis Alarcon, Wen Li, Tsung-Te Liu, Wenting Zhou, Kimiya Hajkazemshirazi, Kenichi Agawa, Michael Mark, Massimo Alioto, Jan Rabaey

Acknowledgements

- California Energy Commission
- STMicroelectronics
- Avago Technologies
- GSRC
- SRC/Freescale
- BWRC Member Companies

