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Abstract 

This report describes the design of atmospheric CO2 concentration measurements that, in 
combination with other measurements and models, would be used to quantify regionally 
distributed CO2 exchanges from California’s terrestrial ecosystems and CO2 emissions from 
fossil fuel combustion.  Using models of net ecosystem CO2 exchange (NEE), fossil fuel CO2 
emissions, and regional meteorology, we predict CO2 concentration “signals” in the atmosphere.  
The predictions of NEE exhibit spatial and temporal variations that are controlled by land cover 
and climate.  Fossil fuel CO2 emissions from metropolitan areas are the strongest localized 
sources of CO2 while weaker but spatially extensive fossil emissions are present throughout the 
Central Valley.  We subdivide the CO2 sources into four components: NEE inside and outside 
CA, and fossil fuel CO2 inside and outside CA.  Maps of predicted atmospheric CO2 
concentration signals from these four sources largely mirror the instantaneous emissions near 
strong sources but plumes of CO2 enriched or depleted air are predicted to advect far from their 
sources.  We then identify a baseline set of observing stations from existing and possible future 
sites that could be used to characterize in-state and out-of-state ecosystem and fossil fuel 
contributions to atmospheric CO2 concentrations.   For each of the stations we calculate mean 
midday concentration signals with standard deviation for each month and source.  We also 
calculate the covariance of the signal due to NEE inside CA with each of the other signals to 
quantify how much of the signal from NEE inside CA might be readily separable from the other 
signals.  On the basis of these predictions, we identify new observing stations and a measurement 
protocol that, in combination with existing stations, would provide data to estimate NEE within 
CA.  Although beyond the scope of this project, future work should estimate the uncertainties in 
estimating California’s NEE that would be obtained using atmospheric concentration data from 
the stations identified herein. 
 
Keywords: greenhouse gas emissions, atmospheric monitoring, inverse methods, land-surface 
CO2 modeling 
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Preface 

The Public Interest Energy Research (PIER) Program supports public interest energy research 
and development that will help improve the quality of life in California by bringing 
environmentally safe, affordable, and reliable energy services and products to the marketplace. 
The PIER Program, managed by the Energy Commission, annually awards up to $62 million to 
conduct the most promising public interest energy research by partnering with Research, 
Development, and Demonstration (RD&D) organizations, including individuals, businesses, 
utilities, and public or private research institutions. PIER funding efforts are focused on the 
following six RD&D program areas: 

` Buildings Energy Efficiency End Use 
` Industrial/Agricultural/Water End-Use Energy Efficiency 
` Renewable Energy 
` Environmentally-Preferred Advanced Generation 
` Energy-Related Environmental Research 
` Energy Systems Integration. 

What follows is the draft report for the PIER-EA Exploratory Grant contract, Contract Number 
#500-02-004 – MRA #015-009, conducted by the Lawrence Berkeley National Laboratory. The 
report is entitled “Development of an Implementation Plan for Atmospheric Carbon Monitoring 
in California” This project contributes to the Energy-Related Environmental Research program. 
For more information on the PIER Program, please visit the Energy Commission’s web site at 
http://www.energy.ca.gov/research/index.html or contact the Energy Commission’s Publications 
Unit at 916-654-5200. 
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Executive Summary 

The Issue 

Carbon dioxide (CO2) is a greenhouse gas (GHG) that is emitted by fossil fuel combustion for 
electricity production, transportation, industry, and other human uses.  Globally, roughly half of 
the CO2 emitted by fossil fuel combustion remains in the atmosphere, leading to sustained 
increases in atmospheric CO2 concentrations. In-state electricity generation accounts for about 
16% of California’s anthropogenic CO2 emissions.1 Because these emissions contribute to 
human-induced climate change, the California Energy Commission (Energy Commission) has 
identified the study of CO2 and other GHGs as a priority area for research, with a particular focus 
on identifying CO2 sources. Future cost and production strategies for electricity generation may 
be affected by economic and policy responses to global warming. Therefore, it will be important 
to determine the contribution of fossil fuel combustion and other sources of CO2 exchange to 
atmospheric CO2 levels.  

Currently, the Energy Commission estimates CO2 emissions using accounting data for fossil fuel 
emissions and a combination of inventory surveys and simple models for net ecosystem 
exchange2 (i.e., the net balance of ecosystem carbon fluxes into and out of the atmosphere, NEE) 
of CO2.  The net ecosystem fluxes occur continuously and uncertainties associated with these 
fluxes are poorly quantified.  

At the national level, the carbon cycle community was posed with the analogous problem of 
providing defensible estimates of net CO2 (and other GHG) exchange.  In response, the research 
community suggested a North American Carbon Program (NACP) to provide a robust approach 
for reducing the uncertainties in regional CO2 exchange estimates.  The NACP is envisioned to 
combine inventory methods of biosphere carbon stocks and fossil fuel emissions, direct CO2 flux 
measurements3, and measurements of atmospheric CO2 concentrations, all coupled within an 
inverse analysis4 employing ecosystem-atmosphere models of NEE and atmospheric transport. 

                                                 
1 California Energy Commission. November 2001. Inventory of California Greenhouse Gas Emissions and 
Sinks: 1990–1999. P600-02-001F. Figure ES-8. 

2  NEE is the net flow of CO2 from terrestrial ecosystems to the atmosphere.  For both NEE and fossil fuel CO2 
emissions, fluxes are defined so that a positive flux causes an increase in atmospheric CO2 concentrations. 

3  Direct flux measurements quantify CO2 exchange over a limited area using micrometeorological methods.  
For example, the eddy covariance method employs rapid measurements of vertical wind velocity and CO2 
concentration to calculate the net flux of CO2 as average of CO2 concentration weighted by vertical velocity. 
Equivalently, the flux can be viewed as the net difference in the amount of CO2 carried upward minus 
downward with the atmospheric eddies. 

4 Mathematical inverse methods estimate the spatial and temporal distribution of surface fluxes that are most 
consistent with measurements of CO2 concentration by working backward from concentration to flux under the 
assumption that CO2 concentrations are the result of surface fluxes being transported in the atmosphere by 
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Measurement of CO2 concentration gradients on regional scales is challenging because the 
concentration differences generated by NEE are in the range of less than 1 ppm to approximately 
20 ppm.  Sufficiently accurate measurements can be accomplished for signals greater than about 
1 ppm from the instrument perspective, as the state of the art in measurement accuracy is 
approximately 0.2 ppm of CO2.  A careful examination of the expected concentration signals 
from NEE and fossil fuel CO2 emissions is an important first step in assuring that atmospheric 
methods can be applied successfully to California. 

Anticipated Benefits for California 

This work benefits California electricity rate-payers by providing the foundation for a network of 
atmospheric monitoring sites and trace-gas sampling protocols that will enable researchers to 
more precisely identify the CO2 contributions from ecosystem processes and fossil fuel 
combustion to global warming. The resulting tool will enable the quantification and verification 
of net CO2 emissions, strategies for within-state carbon sequestration, and emissions trading. 
This project addresses state and national needs for quantification of terrestrial sources and sinks 
of carbon cycle gases. 

Project Objectives 

With the goal of designing a system of atmospheric concentration measurements as part of a 
larger strategy for monitoring CO2 exchange in California, we identified four objectives: 

I. Predict temporal and spatial distributions of NEE and meteorology in the Western US 
for representative time periods covering the seasonal cycle of NEE. 

II. Predict temporal and spatial distributions of fossil fuel CO2 emissions in the Western 
US. 

III. Predict temporal and spatial distributions of CO2 concentration signals due to NEE 
and fossil fuel CO2 emissions inside and outside California. 

IV. Use the atmospheric CO2 concentration signals predicted for existing and potential 
future monitoring stations to judge the suitability of these stations for quantifying 
NEE within CA. 

                                                                                                                                                             

meteorology.  See for example, Kasibhatla, P. and American Geophysical Union (2000). Inverse methods in 
global biogeochemical cycles. Washington, DC, American Geophysical Union. 
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Key Results 

• The predicted atmospheric CO2 concentration signals from NEE at many locations within 
CA are both measurable with existing methods and often comparable or significantly 
larger than signals from fossil fuel emissions. 

• The predicted CO2 concentrations at marine buoys and coastal stations are significantly 
affected by terrestrial signals and cannot be used to represent global background CO2 
concentrations without thoughtful correction. 

• A combination of existing terrestrial sites including flux measurement sites and tall 
communication towers would likely be effective as observation stations for separating 
CO2 concentration signals from NEE within CA from signals due to fossil fuel emissions 
and NEE outside CA. 

Project recommendations 

CO2 observing stations, sampling frequencies, measurement protocols: 

• New terrestrial sites sensitive to California NEE: New terrestrial observation stations 
should be deployed, likely on existing communications tall towers in California where 
signals are predominantly influenced by NEE or fossil fuel CO2 emitted within CA.   

• Sampling frequency:  Air sampling should be conducted continuously in an automated 
manner to accurately capture the concentration during the well-mixed afternoon period 
and the diurnal variation.  Data should be collected and averaged into approximately 30 
minute intervals for further analysis.  However, if resources are limited, periodic 
sampling with National Oceanic and Atmospheric Administration’s (NOAA) flask 
sampling systems5 could capture day versus night differences, providing valuable initial 
data to test the model predictions from this and other studies. 

• Measurement protocol:  Air sampling and analysis, instrument design, calibration, and 
analysis should follow established methods to ensure accuracy and minimize systematic 
errors.  Continuous measurements should be checked against measurements with NOAA 
flask systems.  In addition to the CO2 data, standard ancillary meteorological data (e.g., 
temperature, relative humidity, wind velocity) should also be gathered and recorded. 

• Additional stations:  Observations are planned for a variety of platforms to monitor 
background air entering California for carbon cycle and air quality purposes.  This will 
likely include the three planned marine stations planned by NOAA, periodic aircraft 
profiling planned by NOAA, and sampling from one or more mountain-top stations.  It is 
also expected that existing flux measurement sites will be augmented with accurate and 

                                                 
5  NOAA conducts routine sampling and laboratory analysis of air samples using standardized methods.  
http://www.cmdl.noaa.gov/ccgg/flask.html 
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precise CO2 concentration measurements.  These data sets should be included in future 
analyses. 

Uncertainty Analysis and Station Optimization  

• Future work should expand on the present study to predict the uncertainty that will likely 
be obtained in estimating the total NEE from inside California from the measured 
concentration data.  

• Each of the major sources of uncertainty (e.g., spatial coverage of stations, background 
subtraction, and transport error) should be quantified in terms of uncertainty in 
estimating NEE.   

• Future simulations should include several complete annual cycles to sample different 
weather patterns and to capture inter-annual variations in NEE. 

Measurement of additional trace gas species: 

• Where possible, carbon monoxide (CO) measurements should be included with CO2 
measurements to quantify fossil fuel CO2 emissions.  The use of other sources of CO (and 
other pollutant) data from the California Air Resources Board (CARB) might play a 
valuable part in this effort, particularly near urban areas where pollutant concentrations 
are high enough to be clearly detected with available instruments.   

• Because fossil fuel CO2 contains no radiocarbon (14C), measurements of 14CO2 in 
atmospheric samples can be used to infer the fraction of CO2 due to fossil fuel 
combustion.  Because of the high cost for precision analysis, this technique can probably 
only be applied with a low sampling frequency. 

• The use of 222Rn as a tracer of atmospheric mixing should be explored for use in 
combination with CO2 measurements to quantify net regional CO2.  This technique may 
be well suited to the problem of CA carbon budgets, because much of the air entering CA 
is of marine origin and will be depleted in 222Rn. 

Data Synthesis: 

• A crucial aspect of monitoring California’s CO2 emissions using the concentration 
measurements in an inverse or “top-down” approach will be to sensibly incorporate 
“bottom-up” information (e.g., ecosystem production from forest inventories and crop 
yields, fossil CO2 emissions from improved inventory methods, eddy covariance CO2 
flux data from towers and aircraft flights, and ecosystem models of CO2 exchange) .  This 
approach is an emerging area and developments in the North American Carbon Program 
(NACP) will be valuable to addressing these issues in CA. 
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Estimating Non-CO2 GHG emissions: 

• The methods that we have applied here could be used to develop a measurement strategy 
for non-CO2 GHGs.  Because the relative uncertainties for fluxes of non-CO2 GHGs are 
considerably larger than for CO2, atmospheric budget and inverse approaches may be 
particularly effective in significantly reducing those uncertainties if atmospheric 
observations can be performed. 
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1. Introduction 

1.1  Background and Overview 

The Intergovernmental Panel on Climate Change (IPCC) concluded that anthropogenic increases 
in atmospheric GHG concentrations are affecting global climate (IPCC 2001).  In California and 
the Western U.S., recent work indicates that the future quality of environmental services may be 
compromised by changing climate (Wilkinson et al. 2002; Hayhoe et al. 2004).  In response, the 
Energy Commission has identified quantification of California’s net GHG emissions as a 
research priority.  As such, the dominant sources of CO2 emissions from fossil fuel combustion 
for electricity generation and transportation will be considered in the context of California’s total 
GHG balance. This balance includes contributions from fossil fuel emissions and terrestrial NEE 
as affected by climate and land-use.   

NEE is difficult to quantify on regional scales because (a) the drivers (e.g., climate, land use, and 
management) are hard to quantify; (b) estimates of gross respiratory and photosynthetic CO2 
exchanges are uncertain; and (c) measurements of these exchanges are difficult and expensive to 
make.  Currently, the Energy Commission estimates CO2 emissions using accounting data for 
fossil fuel emissions and a combination of inventory surveys and empirical models for NEE 
(Franco 2002).  Inventory and simple budget methods are in place to estimate some stocks of 
ecosystem carbon pools (e.g., aboveground plant biomass, litter, and soil organic carbon) in 
some locations.  However, it is difficult to quantify statewide carbon sources or sinks from 
changes in stocks because it is expensive to study large areas in sufficient detail and because 
large uncertainties result from calculating NEE as the difference of large and uncertain stocks.  
For example, recent work found large inconsistencies between carbon fluxes estimated using US 
Department of Forestry data in Franco (2002) and fluxes estimated using data provided by the 
California Department of Forestry (Winrock 2004). 

At the national level, the carbon cycle community was posed with the same problem of providing 
defensible estimates of net CO2 (and other GHG) exchange.  In response, the research 
community suggested the North American Carbon Program (NACP) to provide a robust 
approach to estimate exchange of CO2 and other carbon cycle GHGs on regional to continental 
scales (Wofsy et al. 2002) (http://www.esig.ucar.edu/nacp/ ).  Similar efforts are underway in 
Europe (http://www.bgc-jena.mpg.de/public/carboeur/ ).  The NACP is envisioned to combine 
inventory methods of biosphere carbon stocks and fossil fuel emissions, direct CO2 flux 
measurements, and atmospheric monitoring of CO2 concentrations, all coupled with inverse 
analysis employing ecosystem-atmosphere models of NEE and atmospheric transport.    

Atmospheric measurements facilitate independent and complimentary approaches to estimating 
NEE.  Micrometeorological methods (e.g., eddy covariance flux) are now employed in networks 
of ground-based towers to directly measure long-term NEE on plot scales (~ 1-10 km) 
(Baldocchi et al. 2001) and aircraft-based platforms to directly measure short-term NEE on 
regional scales (10-100 km) (Desjardins et al. 1997).  At present, techniques for estimation of 
seasonal to inter-annual NEE on larger regional scales (~ 100-1000 km) are being developed.  
Some of these include mixing models using a tracer with a known source emission rate (Biraud 
et al. 2000; Biraud et al. 2002) and atmospheric boundary layer budgets based on assumptions of 
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average dynamics in the atmospheric boundary layer (Lloyd et al. 2001; Bakwin et al. 2004; 
Helliker et al. 2004).  As part of NACP, ambitious attempts are now underway to refine inverse 
techniques originally developed to estimate NEE on global to continental scales (Ciais et al. 
1995; Denning et al. 1996; Gurney et al. 2002).   

A key feature of the inverse approach is to use NEE predicted by land surface models as an a 
priori estimate of NEE which is then refined so as to minimize the difference between predicted 
and observed atmospheric CO2 concentrations to produce an a postiori estimate of NEE.  This 
approach requires a model of atmospheric transport to relate surface fluxes of CO2 to 
atmospheric concentrations of CO2.   The value of this approach is that the uncertainties in the a 
priori NEE, the transport model, and measured CO2 fluxes and concentrations can be propagated 
through the analysis to estimate uncertainty in the a postiori NEE estimate.  By comparing the a 
priori and a postiori uncertainties in NEE one can judge whether the atmospheric inversion 
approach has been effective in improving (reducing uncertainty of) the NEE estimate.  

Several future sources of atmospheric data will aid the development of regional estimates.  First, 
the NOAA’s Climate Monitoring and Diagnostics Laboratory (NOAA-CMDL) has plans to 
expand their existing operations (http://www.cmdl.noaa.gov/publications/annrpt27/ ) to include 
additional ground-based sites and vertical profiles of CO2 and other trace gases using aircraft.  
Second, in 2003, NASA approved the Orbiting Carbon Observatory (OCO).  OCO, planned for a 
2007 launch, is designed to provide column-integrated measurements of atmospheric CO2 with ~ 
1 ppm accuracy on 10 km swaths separated by roughly 100 km on a 16 day repeat cycle (Crisp et 
al. 2004).  The global coverage and temporal resolution afforded by OCO will be unique, 
although the coverage will be sparse at regional scales and the column-integrated signals are 
significantly smaller than those obtained from surface stations (Olsen et al. 2004).  Hence, 
despite these advances, no current plans include atmospheric CO2 concentration measurements 
specifically designed to enable accurate estimation of California’s net CO2 exchange. 

Measurement of CO2 concentration gradients on regional scales is challenging because the 
spatial gradients are small.  In a simplification that aids discussion, the difference in atmospheric 
concentration ∆CO2 (ppm) between two towers can be expressed in terms of the average surface 
rate of net exchange <NEE> (µmol m-2 s-1) as 

∆CO2 (ppm) = <NEE>  L / (ρ u h), (1) 

where L (km) is the tower separation (km), ρ is the molar density of air (~ 40 mol m-3), u (m s-1) 
is the mean wind speed, and h is the height of the mixing layer (km).   For example,             
∆CO2 /<NEE> ~ 1 ppm / (µmol m-2 s-1) for a tower separation, L= 200 km, mean wind, u = 5 m 
s-1, and mixed layer height, h = 1 km.  We note that for a tower separation, L = 200 km, an air 
parcel moving over the landscape at 5 m s-1 has a transit time between towers of 12 hr or ½ day.  
Since the average uptake over a daytime period is likely to be only  -1 to -10 µmol m-2 s-1, the 
differences in CO2 concentration are 1 to 10 ppm.  Measuring the 1 ppm to 10% precision 
requires relative instrument accuracy of 0.1 ppm.  This accuracy can be accomplished from the 
instrument perspective, as the state of the art in measurement accuracy is approximately 0.1-0.2 
ppm (Bakwin et al. 1998).  High accuracy is necessary because an average annual flux of just 0.1 
µmol m-2 s-1 is equivalent to a change of 0.38 tC ha-1 yr-1.  Hence, a careful examination of the 
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expected signal levels is an important first step in determining whether inverse methods could be 
successfully applied to California. 

1.2  Project Goal and Objectives 

The goal of this project is to design a set of atmospheric concentration measurements as part of a 
larger strategy for monitoring CO2 exchange in California.  We identified four objectives to meet 
this goal: 

• Predict temporal and spatial distributions of NEE and meteorology in the Western US for 
representative time periods covering the seasonal cycle of NEE. 

• Predict temporal and spatial distributions of fossil fuel CO2 emissions in the Western US. 

• Predict temporal and spatial distributions of CO2 concentration signals due to NEE and 
fossil fuel CO2 emissions inside and outside California. 

• Use predicted atmospheric CO2 concentration signals to identify existing and potential 
future monitoring stations for suitability in characterizing and separating NEE within CA 
from other sources.   

1.3 Report Organization  

Section 2 of this report describes our approach.  Section 3 describes our results, including 
spatiotemporal NEE distributions (Section 3.1); spatiotemporal fossil fuel CO2 emission 
distributions (Section 3.2); spatiotemporal distributions of atmospheric CO2 concentrations 
(Section 3.3); and identification and evaluation of observing stations (Section 3.4). Section 4 
presents conclusions and recommendations on how the Energy Commission can use the project 
results to choose stations and measurement protocols to provide the most effective augmentation 
of other existing and planned atmospheric monitoring efforts. 

2. Project Approach 

This section describes the methods used to address each of the objectives described above. 

2.1  Prediction of NEE and Meteorology 

We predict NEE and regional meteorology using a modeling framework (MM5-LSM1) that 
includes a coupled version of MM5 (Grell et al. 1995) and LSM1 (Bonan 1996). The coupled 
model was chosen because it provides consistent predictions of NEE and surface energy fluxes 
(latent and sensible heat) that drive atmospheric mixing.  In this section, we describe the coupled 
model and how it was employed for this work. 

MM5 is a mesoscale meteorological model that is used for forecasting regional scale weather and 
for studying atmospheric dynamics and pollutant dispersion (for a partial list of papers see: 
http://www.mmm.ucar.edu/mm5/Publications/mm5-papers.html). The model can be run with 
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nested grids so that large-scale atmospheric features can be captured as well as impacts of fine 
scale topography and surface fluxes. LSM1 is a land-surface model that simulates CO2, H2O, and 
energy fluxes between ecosystems and the atmosphere. Twenty-eight land cover types are 
simulated in the model, each with a specified seasonality for leaf area and parameters controlling 
soil CO2 flux to the atmosphere.  Photosynthesis and ecosystem respiration are calculated at each 
time step using the land cover information and calculated meteorology in each pixel.  LSM1 has 
been tested in a range of ecosystems at the site level (e.g., (Bonan 1995; Bonan et al. 1997; Riley 
et al. 2003)).  The integration of LSM1 with MM5 was accomplished via the established 
interface for the OSULSM, with changes in the interface to account for partitioning shortwave 
radiation between diffuse and direct components (Chen et al. 2001).  Previous work has shown 
that the coupled model’s predictions of energy fluxes, near-surface air temperatures, and soil 
moisture and temperature compared favorably to data collected during a previous field campaign 
(Betts et al. 1998; Cooley et al. 2004). 

We performed four simulations covering the first 15 days of March, June, September, and 
December of 2003. Although a full year was not simulated due to computational constraints, 
these periods represent a realistic range of meteorological conditions and ecosystem CO2 
exchanges over the year. The model was run with two nested grids with horizontal resolutions of 
60 over the entire US, and 20 km over the modeling shown in Figure 1.  The vertical resolution 
in both grids was 18 logarithmically spaced vertical layers between the surface and 20 km 
altitude. The following physics packages were used in the simulations: Grell convective scheme, 
simple ice microphysics, MRF ABL scheme, and the CCM2 radiation package 
(http://www.mmm.ucar.edu/mm5).  We used the standard initialization procedure for MM5v3.5, 
which applies first-guess and boundary condition fields interpolated from the National Center for 
Environmental Prediction (NCEP, http://www.ncep.noaa.gov/ ) reanalysis data (Kalnay et al. 
1996; Kistler et al. 2001) to the outer computational grid.  

To improve the accuracy of the seasonal cycles of carbon exchange across the different 
ecosystem types, we compared the predicted NEE with results of eddy covariance flux 
measurements made in the Western US and available through the FLUXNET data archive 
(http://daacl.esd.ornl.gov/FLUXNET/) and archival literature (Goldstein et al. 2000; Baldocchi et 
al. 2001; Falge et al. 2002; Law et al. 2002).  Because there are relatively few sites for flux 
measurements compared to the large number of ecosystem types present in the Western U.S., we 
aggregated the land cover types present in LSM1 into a subset of seven cover types shown in 
Figure 1.  We then calculated the mean NEE for each cover type using the results of our model 
runs, with the exception of the desert and urban cover types which produced zero NEE in the 
model.   In the cases where the calculated mean NEE is significantly different from the annual 
mean flux reported for that cover type, we scaled the daytime and nighttime exchange separately 
by constant factors for each of the four seasons, so that the daytime and nighttime NEE matched 
the diurnal cycle from the measurements and the annual mean NEE matched the FLUXNET 
estimates.  Our approach is similar to previous work where the prediction of photosynthesis is 
assumed to be correct but soil respiration of CO2 is scaled by a constant factor in each pixel to 
produce zero net annual CO2 exchange (Denning et al. 1996).  Our method differs from that 
approach in that we used field measurements to determine the mean annual carbon balance in a 
given cover type and did not require that individual pixels were in carbon balance.  We believe 
this is appropriate because many California ecosystems are managed to accomplish a net 
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removal of CO2 from the atmosphere (e.g., timber forestry and crop agriculture).  In our 
approach we calculated the annual mean NEE and also the mean NEE for daytime and nighttime 
in each season from the measurements.  If the model predictions of mean annual NEE averaged 
over a given cover type was significantly different from the mean calculated from field 
measurements then we scaled NEE in all pixels of that cover type by a constant factor so that 
both the annual mean and the mean daytime and nighttime NEE matched the field 
measurements.   

 

Figure 1.  Vegetation distribution used to characterize land cover in the Western US for the 
simulations described in this report.  The pixel size is 20 km on a side. 

2.2  Prediction of Fossil Fuel CO2 Emissions 

We predicted the spatial and temporal distributions of CO2 from fossil fuel emissions in the 
Western US by scaling estimated emissions of other combustion related pollutants (e.g., CO, and 
NOx) that have been shown to correlate with atmospheric CO2 concentration (Potosnak et al. 
1999; Dillon et al. 2002; Gerbig et al. 2003; Lamarque et al. 2003). We used CO data reported in 
the US Environmental Protection Agency’s (EPA) National Emission Inventory (NEI) of criteria 
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pollutants (EPA 2001).  We obtained the NEI database from the Lake Michigan Air District 
Consortium (LADCO), on a grid with 36 km resolution for the continental US.  The database 
contained hourly emissions for weekdays, Saturdays, and Sundays of each month in 1999.  We 
extracted the CO data from the NEI and interpolated it to produce maps at 20 km resolution.  
Fossil fuel CO2 emissions were calculated by multiplying CO emissions by a constant factor of 
23.3, so that the annual sum of surface CO2 emissions matched the Energy Commission’s 
estimate of California CO2 emissions in 1999 (363 Mt CO2 minus approximately 17 Mt CO2 for 
bunker and aviation fuel combustion) (Franco 2002).  This scaling factor is reasonably consistent 
with previous work on atmospheric CO2:CO ratios attributed to signals from fossil fuel 
combustion (Potosnak et al. 1999). 

This method provides a high-resolution picture of fossil fuel CO2 that is sufficient for this 
planning exercise.  However, before using this type of information in an inverse analysis, 
refinements in the modeling should address the following issues.  First, although the fossil CO2 
emission maps likely capture the dominant spatial and temporal features of the CO2 emissions, 
they will contain regions and periods for which the CO2:CO ratio varies (e.g., high CO from 
biomass burning or low CO from natural gas fired electricity production).  A superior approach 
would be to use the information on fuel use underlying pollutant emissions to estimate CO2 
directly.  Second, as mentioned above, these fossil fuel CO2 emissions do not contain bunker or 
aviation CO2 emissions from marine or aircraft transportation.  These emissions can be included 
with some consideration of their spatial distribution in the atmosphere.  Third, the predictions 
should use an emission inventory specific to the year being simulated or be adjusted 
appropriately. 

2.3  Prediction of Concentration Signals 

We predicted atmospheric CO2 concentrations using the US EPA Community Multiscale Air 
Quality (CMAQ) model (http://www.epa.gov/asmdnerl/models3/doc/science/science.html).  
CMAQ was developed and applied for modeling air quality, incorporating the processes of  bulk 
air motion, turbulent diffusion, and thermal and photo-chemistry (EPA 1999; Cohn et al. 2001; 
Bullock et al. 2002).  Spatially and temporally resolved surface emissions were input to the 
model. Meteorological inputs were taken from the MM5 model predictions that included wind 
vectors, atmospheric boundary layer (ABL) height6, and vertical velocity fluctuations to compute 
the motion of air parcels.   

CMAQ was used to calculate the temporal and spatial propagation of atmospheric CO2  with the 
only sources and sinks occurring at the land surface as prescribed by the maps of NEE and fossil 
fuel CO2 emissions.  This is valid because CO2 is not generated or lost through chemical 
reactions in the atmosphere.  Initial and boundary conditions for CO2 concentrations were set to a 
constant value of 370 ppm and signals were calculated with respect to this background.  We 
subdivided NEE and fossil fuel CO2 into in-state and out-of-state components and then 
calculated the CO2 signals from four sources of surface flux: 1) NEE within CA (NEE.in), 2) 

                                                 
6  The height in the atmosphere to which air is well mixed. 
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NEE outside CA (NEE.out), 3) fossil fuel CO2 from combustion inside CA (ffCO2.in), and 4) 
fossil fuel CO2 from combustion outside CA (ffCO2.out).   

2.4  Identification and Evaluation of Observation Stations 

We identified an initial set of surface observation stations by starting with existing carbon cycle 
monitoring networks (e.g., NOAA-CMLD; http://www.cmdl.noaa.gov, and the Ameriflux 
Program http://public.ornl.gov/ameriflux ).  However, because of their relatively sparse 
coverage, we included two categories of other stations.  Some of the additional stations were 
marine buoys planned by NOAA for offshore monitoring.  Others were obtained from lists of 
radio and television transmission towers (http://wireless2.fcc.gov/UlsApp/AsrSearch) similar to 
the Park Falls Tower in Wisconsin where CO2 measurements have been made previously 
(Bakwin et al. 1998).    

We evaluated the efficacy of these observing stations by examining the time series concentration 
signals obtained at each station from the four component sources (NEE.in, NEE.out, ffCO2.in, 
and ffCO2.out). Three criteria were used in the selection process.  First, we wanted to identify 
marine stations that had only small signals from the terrestrial sources.  These stations would be 
used to quantify the CO2 concentration boundary conditions for air entering the region.  Second, 
we wanted to find stations that provided measurable signals from terrestrial sources.  We used 
the time series data to calculate the mean mid-day signals from each component source and over 
each season.  Mid-day CO2 concentration signals were chosen because the mixing height of the 
atmospheric boundary layer is generally well defined and, although large, can be accurately 
represented in meteorological models.  By comparison, nighttime atmospheric mixing is often 
poorly defined and represented.  Third, we wanted the signals from NEE.in at the stations to be 
clearly distinguishable from signals due to the other sources.  To quantify the degree of similarity 
between signals, we calculated the covariance between the signal from NEE.in. and the signals 
from each of the other three sources.  If there was little covariance, then signal variations due to 
NEE.in could be measured and the signals from other sources would add noise but not bias to the 
measurement.      

3. Results and Discussion 

3.1  Spatiotemporal distribution of Net Ecosystem Exchange 

Using the coupled MM5-LSM1 simulations, we predicted regional meteorology and NEE for the 
Western region over the first 15 days of March, June, September, and December.  We calculated 
the average NEE for each cover type over the four periods of the study. Both the mean NEE for 
forest (-0.66 t C ha-1 yr-1) and for shrub lands (0.38 t C ha-1 yr-1) were close to carbon balance, 
and reasonably consistent with the range of estimates for the annual NEE from the literature 
(Goldstein et al. 2000; Baldocchi et al. 2001; Falge et al. 2002; Law et al. 2002).  The mean NEE 
of irrigated crops (–10.5 t C ha-1 yr-1) and dry crops (–5.5 t C ha-1 yr-1) both showed the large net 
uptake expected from managed agricultural systems, where nitrogen is applied and crop residues 
are removed after harvest. The predicted mean NEE of woody savanna (-19.5 t C ha-1 yr-1) and 
grassland (–6.2 t C ha-1 yr-1) were sufficiently different from values observed in California oak 
woodland (pers. comm. D. Baldocchi) and grassland systems (Xu et al. 2004) that adjustments 
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were made to reduce net daytime uptake and increase net nighttime release as described in 
section 2.1.  The resulting mean NEE of woody savanna and grassland were both     -0.7 t C ha-

1yr-1. 

Predicted NEE exhibits large variations both in time and with cover type.  For example, the maps 
in figure 2 (and figure A1, appendix A) show the diurnal variation in NEE over the course of a 
day in June.  As expected, nighttime NEE is positive, reflecting plant and soil respiration of CO2 
to the atmosphere.  Daytime NEE is negative for ecosystems that are actively assimilating CO2 
from the atmosphere (e.g., forest, woodland, and crop lands), but slightly positive for shrub 
ecosystems where, on this day, respiration was larger than photosynthesis.  The large spatial 
variations in NEE reflect the varied ecosystems present in California.  Similarly, the ecosystems 
have different seasonality, which generates seasonal NEE patterns (see figure A2 in Appendix 
A).  Capturing these seasonal NEE variations is important in order to accurately predict seasonal 
variations in atmospheric CO2 concentrations.   

 

Figure 2.  Maps showing the diurnal cycle of predicted net ecosystem exchange, NEE (µmol CO2 
m-2 s-1), for a day in June.  Horizontal and vertical axes are longitude and latitude respectively.  
Upper panels show positive fluxes to the atmosphere dominate at night due to respiration.  Lower 
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panels show negative fluxes to the atmosphere dominate during the day when photosynthesis 
removes CO2 from the atmosphere.  Note: NEE is shown with a logarithmic scale. 

3.2  Spatiotemporal distribution of fossil fuel CO2 emissions 

A representative diurnal cycle of CO2 emissions from fossil fuel combustion in the Western US 
is shown in Figure 3 for a weekday in June.  As expected, fossil fuel CO2 emissions were strong 
in large urban centers (larger than any positive ecosystem fluxes), but were spatially localized.  
Away from urban centers, emissions remained significant only along suburban transportation 
corridors.  Emissions from aircraft and ship traffic were not included, but represent a small 
fraction of estimated CO2 emissions from California.  The temporal variations in fossil fuel CO2 
fluxes were much smaller than temporal variations in signals from NEE because ecosystems 
have distinct diurnal and seasonal cycles of net uptake and release.  Given that the temporal 
variations in CO2 concentration signals from fossil fuel CO2 are smaller than the variations from 
NEE we hypothesize that fossil fuel signals could be predicted and subtracted from measured 
signals to yield the signal from NEE.  This hypothesis should be investigated in future work. 
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Figure 3.  Maps showing the diurnal cycle of estimated fossil fuel CO2 emissions for the Western 
US for a weekday in June.  Panel layout, axes, and logarithmic scale for units are the same as in 
Figure 2. 

3.3  Spatiotemporal distribution of CO2 concentrations in the atmosphere 

Atmospheric CO2 concentrations were predicted for the four simulation periods using predicted 
NEE, fossil fuel CO2 emissions, and meteorology described above.  All CO2 concentrations are 
reported as deviations from the constant boundary condition applied at the edge of the simulation 
domain.  Figure 4 shows the diurnal cycle in CO2 concentration signals from NEE in the lowest 
(0-100 m) model layer of the atmosphere for the day shown in Figure 2.  In areas with strong 
surface uptake, concentrations were reduced below the background, while in areas with strong 
sources they increased above the background.  Air parcels containing significant CO2 
concentration signals were predicted to advect to marine locations up to 300 km west of the 
coast, consistent with the results of another study (Riley et al. 2004).  This suggests that attempts 
to use the data from marine and coastal stations to provide boundary condition information on 
the air entering California will require correction for terrestrial influence.  From these maps we 
can also conclude that the spatial differences in CO2 signals across CA are large enough to be 
clearly measured with available instrumentation. 

 

Figure 4.  Maps showing diurnal variation in surface layer CO2 concentrations resulting from 
NEE for the day shown in Fig 2. The upper (lower) three panels correspond to nighttime 
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(daytime) periods.  Horizontal and vertical axes are longitude and latitude respectively.  Note 
that CO2 concentration contours are logarithmically scaled.  The spatial variations in CO2 
concentration are large enough to be clearly detected with available instrumentation. 

 

Figure 5.  Maps of diurnal variation in surface layer CO2 concentrations resulting from fossil fuel 
CO2 emission for June time period as in Figure 4.  Panel layout, axes, and logarithmic scale for 
units are the same as in Figure 4. 

Figure 5 shows the diurnal cycle in CO2 concentrations resulting from fossil fuel CO2 emissions 
for the same period as Figure 4.  In this case, only increases above background are predicted 
because all fluxes are positive with respect to the atmosphere.  As with the emissions map, the 
most significant increments in CO2 concentration occurred near the urban centers, but significant 
plumes of CO2 enriched air were also transported to other locations far from the location of 
emissions.  However, the mean and diurnal variations in fossil CO2 signals were generally 
smaller than CO2 signals from NEE at most locations away from urban centers.  The smaller size 
and lower variability of fossil CO2 signals suggests that subtracting predicted fossil CO2 signals 
from future measurements of CO2 concentration may be effective for estimating the signals from 
NEE at many locations.  This increases our confidence that atmospheric observations will enable 
effective estimation of NEE.   

In order to facilitate identification of the most promising locations for observing stations, we 
calculated the CO2 signals for four components: signals derived from 1) NEE within CA 
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(NEE.in), 2) NEE outside CA (NEE.out), 3) fossil fuel CO2 from combustion inside CA 
(ffCO2.in), and 4) fossil fuel CO2 from outside CA (ffCO2.out).  Figure 6 shows the mean 
midday surface layer concentration signals for each of the four components in June.  The panels 
of Figure 6 show that the central valley and central coast areas had negative signals from NEE 
inside CA and positive signals from fossil fuel CO2 produced inside CA.  During this period 
Southern CA had positive signals from both NEE and fossil fuel CO2.  Coastal and marine areas 
obtained smaller positive signals from plumes transported off the coast.  As shown in Appendix 
B, these patterns varied significantly with season.  In the case of NEE, the patterns varied 
because NEE has significant seasonal variations due to ecology and climate.  In the case of fossil 
fuel CO2, the variations are driven mostly by variations in the mean meteorology for the different 
months. 

 

Figure 6. Maps of June midday mean surface layer CO2 concentrations resulting from NEE 
inside (upper left) and outside (upper right) California, and fossil CO2 emissions inside (lower 
left) and outside (lower right) California.  As with previous figures the horizontal and vertical 
axes are longitude and latitude respectively.  Note that CO2 concentration contours are 
logarithmically scaled.  
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3.4  Identification and Evaluation of Observation Stations 

3.4.1 Existing and Potential Future Stations 

A set of existing and potential future monitoring stations is shown in Figure 7 and Table 1.  
Some of the existing stations are part of the NOAA CMDL measurement and sampling network 
(see the following report: http://www.cmdl.noaa.gov/publications/annrpt27/), some are 
independent sites (e.g., Scripps), and others are Ameriflux sites where accurate CO2 
measurements could be implemented, and have been at Blodgett Forest (station 13). We note that 
there are other existing ecological and biogeochemical flux measurement sites in California that 
could be included in future analysis, but such a compilation was beyond the scope of this study.   
The marine stations are chosen to sample the atmosphere from relatively pristine locations that 
provide boundary conditions for air entering the California.  The coastal stations sample air in a 
transition regime.  The inland stations sample air that is heavily influenced by terrestrial surface 
fluxes.  We did not include a significant number of sites East of California because the 
topography of the Sierra poses a serious challenge for modeling atmospheric transport. 

 

Figure 7.  The positions of existing and possible future observations stations examined in this 
study.  The locations range from marine stations that largely sample background air to inland 
stations that sample air subject to strong terrestrial influence. 

Table 1.  Existing and potential monitoring stations.  For existing sites the name of the research 
program is listed in parentheses.   

Station Name Lat lon agl (m) 
1 Buoy 33.000 -120.000 3
2 Buoy 38.000 -125.000 3
3 Buoy 45.000 -126.000 3
4 Tall Tower 34.200 -118.100 296
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5 Scripps Pier (Scripps Inst.) 33.000 -117.300 10
6 Tall Tower 37.800 -122.500 298
7 Point Arena (NOAA) 38.911 -123.692 10
8 Trinidad Head (NOAA) 41.000 -124.000 10
9 Tall Tower 36.700 -119.300 259

10 Tall Tower 38.240 -120.502 624
11 Tonzi Ranch (Ameriflux) 38.432 -120.966 12
12 Blodgett Forest (Ameriflux) 38.550 -120.633 15
13 Tall Tower 40.300 -122.100 304
14 Tall Tower 35.700 -114.300 396
15 Metolious (Ameriflux) 44.437 -121.567 12
16 Wind River  (Ameriflux) 45.821 -121.951 73

   

3.4.2  CO2 concentration signals at monitoring station locations 

The time series of concentration signals calculated for each station was extracted from the 
concentration maps and examined to determine the contributions to the predicted signals from 
NEE and fossil CO2 emissions inside and outside of California.  Figure 8 (and Appendix C) 
shows the mean midday concentration signal for each station and season. As mentioned above, 
we separated the stations into categories based on whether their primary influence was oceanic 
(stations 1-3) and primarily of use for monitoring boundary conditions, coastal (4-8) and 
influenced by a mixture of marine and interior air, interior (9-13) and strongly influenced by 
NEE and fossil CO2, or outside of California (14-16) and of value for monitoring boundary 
conditions.  Within the station groupings, the stations are arranged from South to North.  

The general patterns show increasing signals from NEE.in and decreasing signals from ffCO2.in 
from south to north.  This is because Southern CA is quite arid and does not support the high 
rates of ecosystem carbon exchange that are possible in the comparatively moister conditions 
found in Northern CA.  Other significant features for stations within CA are consistent 
seasonality (also see Appendix C) with negative NEE.in signals during March, small or positive 
signals in June near the coast but negative signals inland (from irrigated agriculture and Sierran 
forests), uniformly positive signals in September when most areas are subject to water stress, and 
small signals in December when temperatures are lower.  Patterns for ffCO2.in and out show less 
seasonality, largely due to variations in atmospheric transport because fossil emissions did not 
vary significantly with season.   

The signals predicted for the different stations vary by grouping and latitude.  Stations 1 and 2 
show mean signals of ~ 1-2 ppm with comparable day-to-day variations, suggesting that their use 
as background monitoring stations will require incorporating estimated terrestrial signals.  We 
note that this may also be true for station 3; it is near the northwest edge of the modeling domain 
and signals from terrestrial CO2 exchanges even farther north may influence the signal at station 
3.  Stations 6-13 showed significant signals from NEE.in, while stations 4, 5, 9,11, and 12 all 
exhibited large signals from ffCO2.in and could be used to monitor fossil emissions.  Stations 
14-16 exhibited strong signals from NEE.out and ffCO2.out and would therefore provide 
information to estimate a combination of those sources. Finally, the signals from the tall towers 
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(4, 6, 9, 10, 13, 14) generally exhibited smaller day-to-day variations as compared with nearby 
surface stations (Appendix B).  This reduced variability occurs because they average over larger 
areas, a fact that makes them potentially superior for regional inverse studies.   

 

 

Figure 8.  Mean CO2 concentration signals from NEE in and out and fossil fuel CO2 emissions in 
and out of California for each of the four months examined in this study.  Vertical lines separate 
the stations into four groups in the following order: oceanic, coastal, interior, and interior outside 
California. CO2 concentrations are deviations from the seasonal background.  

3.4.3 How well do concentration signals at monitoring sites allow discrimination of NEE 
inside CA from other signals? 

Additional insight into the relative strengths of the observing stations can be obtained by 
inspecting the covariance between signals from NEE.in and the other signals shown in Figure 9.  
We normalized the covariance between signals from NEE.in and other signals by the standard 
deviation in signal from NEE.in.  This measure shows the amount of signal variation from the 
other sources that are correlated with (and could not be distinguished from) variations from 
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NEE.in.  In most cases, the covarying signals were small compared to the signal variations from 
NEE.in.  This suggests that if the variables governing variation in the signal from NEE.in can be 
captured in an ecosystem-atmosphere model (e.g., MM5-LSM1), then an inverse model can use 
the measured signals to estimate NEE.in without interference from the other signals.  A subset of 
stations (6, 7, 8, 10, 12, and 13) did not exhibit significant signal correlations between NEE.in 
and ffCO2.in, and only limited correlations with NEE.out and ffCO2.out.  Station 12 (Blodgett 
forest) appeared particularly well suited in this respect, although modeling the transport fields for 
Blodgett poses a greater challenge (because of the mountainous terrain) than for the Central 
Valley sites.  Based on these results, we conclude that measurements made at a subset of these 
stations are likely to offer an opportunity to quantify NEE.in without significant interference 
from other sources. 

 

Figure 9.  Standard deviation of midday CO2 signals from NEE inside California (top left), 
showing predicted variation in daytime signals for each season.  The normalized covariance of 
the signal from NEE.in with the other signals is also shown: NEE outside CA (top right), ffCO2 
inside CA (bottom left), and ffCO2 outside CA (bottom right).  In all cases the normalization 
factor is the standard deviation of NEE.in, yielding the component (or projection) of each signal 
that is correlated with signal from NEE.in.  Several stations show normalized signal covariances 
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that are small compared to the standard deviation of the NEE.in signal are hence likely to offer 
an opportunity to quantify NEE.in without interference from other sources. 

4. Conclusions and Recommendations 

This section provides conclusions and recommendations for 1) a proposed set of initial 
observation stations, sampling frequencies, and a measurement protocol for CO2, 2) analysis of 
the uncertainties in future inverse model estimates of NEE and refinement of observing stations, 
3) measurement of additional trace gases that would enhance our ability to estimate CO2 
exchange, 4) initiation of a data synthesis effort to couple data from different sources relevant for 
estimating NEE, and 5) application of atmospheric methods for non-CO2 GHG emissions. 

4.1 Observation Stations and Sampling Frequency 

The results of this project have shown that there are locations where atmospheric CO2 
measurements will help constrain California’s NEE.  Based on these results, we recommend an 
initial sampling at a limited number of sites to provide a baseline for future efforts: 

• New terrestrial stations:  New observing stations should be deployed at existing 
communications tall towers in California, chosen so that CO2 signals are strongly 
influenced by either NEE.in or ffCO2.in.  Stations 4, 9, 10, and 13 are well suited in this 
respect.  Station 4 would provide an unambiguous measure of emissions from the Los 
Angeles area; station 9 would sample air in the San Joaquin Valley that is effected by a 
mixture of agricultural and Bay Area emissions ; station 10 would be effective for 
monitoring signals from NEE due to Central Valley agriculture and forests in the Sierra, 
with a comparatively small signal from fossil CO2 emissions; station 13 would monitor 
exchange from northern valley agriculture and forests. 

• Sampling frequency:  Ideally air sampling should be conducted continuously in an 
automated manner to accurately capture the concentration during the well-mixed 
afternoon period and the diurnal variation.  Data should be collected and averaged into 
approximately 30-minute intervals for further analysis.  However, if resources are 
limited, periodic sampling with NOAA flask systems could be performed to provide a 
valuable initial data to test the model predictions similar to those performed in this study. 

• Measurement protocol:  Air sampling, instrument design, calibration, and analysis should 
follow established methods to ensure accuracy and minimize systematic errors (Bakwin 
et al. 1995).  In particular, continuous measurements should be calibrated against 
multiple known standards (preferably supplied by NOAA) several times per day.  
Periodic sampling with NOAA flask systems should be performed at these sites to 
provide a check on the continuous measurements. 

• Additional stations:  Observations are planned for a variety of platforms to monitor 
background air entering California for carbon cycle and air quality purposes.  This will 
likely include the three planned marine stations planned by NOAA, periodic aircraft 
profiling planned by NOAA for Trinidad Head and a site in Southern CA, and potentially 

 17



continuous or flask sampling from one or more mountain-top stations.  As noted above, 
interpreting signals from the marine stations will require estimation of signals from 
terrestrial sources in North America.  It is also expected that existing flux measurement 
sites will be augmented with accurate and precise CO2 concentration measurements.  
These data sets should be included in future analyses. 

4.2 Uncertainty Analysis and Site Optimization 

Because it was beyond the scope of the current work, we did not include an analysis of the 
uncertainty in NEE that could be obtained using data from the suggested observing stations in an 
inverse approach.  Before implementing a full set of observing stations, an analysis of the likely 
uncertainty in estimating NEE using atmospheric concentration data is warranted.  In particular, 
one should determine whether the uncertainty in estimating NEE using the atmospheric inverse 
approach is very large or an infeasible number of stations are required.  This is a complicated 
problem because the choice of the inverse approach and multiple sources of uncertainty all affect 
the final uncertainty in CO2 flux as well as the optimal locations for a given number of stations.  
In particular, the desired spatial resolution of the NEE estimates will depend on the number and 
locations of the stations.  Sources of (likely correlated) uncertainty include: 1) the a priori NEE 
estimate, 2) the meteorology and hence atmospheric transport, 3) the background CO2 
concentrations from outside the modeling domain, 4) the CO2 contribution from fossil emissions, 
and 5) the uncertainty in the concentration measurements themselves. To address these issues we 
recommend:  

• First, simplify the consideration to focus on the uncertainty in estimating the total NEE 
from inside California.  Use simplified forms (assume errors are uncorrelated) for the 
uncertainties from each of the five above sources, apply a Monte Carlo approach to generate 
pseudo data, and then estimate the distribution of California NEE obtained from applying an 
inverse method.  Iterate this calculation with different combinations of towers or alternate 
locations to estimate the optimal number and location of towers, in part driven by budget 
considerations.  This approach would probably provide a good first guess as to whether 
acceptable uncertainties in NEE for California could be obtained with a limited number of 
towers and hence whether and where to proceed with instrument deployment.   

• Second, improve the understanding of each of the five above sources of uncertainty. For 
example, predictions of CO2 concentrations should include calculation of signals from the 
seasonally and spatially varying global background of CO2 concentrations.  First order 
estimates in boundary conditions could be derived from the CMDL Globalview CO2 product 
(http://www.cmdl.noaa.gov/ccgg/globalview/index.html). These estimates should be 
compared with the results of aircraft campaigns that measure the vertical profile of CO2 (and 
other gases) over the Eastern Pacific.  Estimating the boundary conditions will also be 
valuable because it will allow a comparison between predicted CO2 concentrations and those 
measured at existing stations.  

• Third, expand the time periods covered in the investigation and the spatial resolution of 
the inverse estimates.  Include several complete annual cycles to sample different weather 
patterns over multiple years which capture inter-annual variations in both meteorology and 
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NEE (which is strongly dependent on meteorological forcing).  Investigate how well NEE 
from different regions within California can be separately identified. 

4.3 Additional Trace Gas Species for CO2 Source Attribution 

Although it is beyond the scope of this study to analyze this problem in detail, there are several 
additional trace-gas species that would provide important additional constraints on CO2 
exchange:   

• CO and certain organic compounds (e.g., C2H2) have been identified as useful tracers of 
combustion (Potosnak et al. 1999) and should be developed for use in California, as is 
currently the case at Blodgett Forest.  The use of CO (and other pollutant) measurements 
from the California Air Resources Board (CARB) might play a valuable part in this 
effort, particularly near urban areas where pollutant concentrations are high enough to be 
clearly detected with the available instruments.  If dedicated future CO2 measurement 
stations are commissioned, inclusion of precise monitoring CO (and other species) in 
addition to CO2 would significantly enhance their capability.   

• Radiocarbon CO2 (14CO2) can provide a strong constraint on fossil fuel combustion 
because the 5700 year half-life for 14C is short compared to the age of geologically 
derived petroleum hydrocarbons and fossil hydrocarbons contain no 14C.  Given the 
current precision and accuracy of 14CO2 measurements, it should be possible to quantify 
the 14CO2 free component of air to ~ 1 ppm.  NOAA CMDL and LBNL are 
independently initiating the use of atmospheric sampling and analysis of 14CO2 for this 
purpose.  Because of the high cost for precision analysis (roughly $300 per sample) this 
approach is currently beyond the scope of most routine monitoring programs, but might 
be employed to add precision to fossil CO2 estimates during an intensive measurement 
period. 

• The ratio of CO2 to 222Rn has been used to estimate net regional CO2 exchange using the 
assumption that surface emission rate of 222Rn can be accurately determined (Biraud et al. 
2000; Biraud et al. 2002).  This technique is well suited to the problem of CA carbon 
budgets because much of the air entering CA is of oceanic origin and will be depleted in 
222Rn.  Application of this technique will require detailed analysis of 222Rn source fields 
for CA because work has shown that 222Rn emissions from soil can vary substantially 
with meteorology and soil moisture (Conen et al. 2002; Levin et al. 2002). 

4.4  Synthesis of Bottom-Up and Top-Down Methods 

A crucial aspect of using atmospheric, or “top-down”, methods to monitor California’s CO2 
emissions will be to sensibly incorporate “bottom-up” information (e.g., ecosystem production 
from forest inventories and crop yields, fossil CO2 emissions from improved inventory methods, 
eddy covariance CO2 flux data from towers and aircraft flights, and ecosystem models of CO2 
exchange) in the inversion.  This approach is an emerging area and developments in the NACP 
will be valuable to addressing these issues in CA. 
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4.5  Potential for Monitoring Non-CO2 GHG Emissions 

The approach that we have applied here could also be profitably applied to quantify the 
atmospheric signals generated by surface emission of non-CO2 GHGs.  Because the relative 
uncertainties for fluxes of non-CO2 GHGs are considerably larger than for CO2 (Franco 2002), 
atmospheric budget (Biraud et al. 2002) and inverse approaches may be particularly effective in 
significantly reducing those uncertainties using atmospheric observations. 
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Glossary 

ABL Atmospheric Boundary Layer 

CARB California Air Resources Board 

CMAQ Community Multiscale Air Quality Model 

CO Carbon Monoxide 

CO2  Carbon dioxide 

EPA U.S. Environmental Protection Agency 

GHG Green House Gas 

IPCC Intergovernmental Panel on Climate Change  

LADCO  Lake Michigan Air Director Consortium 

NACP North American Carbon Program 

NCEP National Center for Environmental Prediction 

NEE Net Ecosystem Exchange 

NEI EPA National Emission Inventory 

NOAA CMDL U.S. National Oceanic and Atmospheric Administration Climate Monitoring 
and Diagnostics Laboratory 

OCO NASA Orbiting Carbon Observatory 

PIER Public Interest Energy Research 
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Appendix A.  Diurnal and Seasonal Variations in NEE 

Figure A1 shows the diurnal variation in NEE for each ecosystem type in June.  Black points 
indicate the average from all pixels in each day while the red bar indicates the mean (length 
indicating and standard error of the mean) over the 12 days included in the average.  With the 
exception of (dryland) shrub, the ecosystems take up significant amounts of carbon during the 
day because temperatures are reasonably warm and water is not seriously limiting and release 
carbon back the atmosphere at night.  The seasonal variation in NEE for the four months 
included in the simulations are shown in figure A2.  Forest, woody savanna, grassland, and shrub 
ecosystems show seasonal patterns of NEE a combination of sunlight, temperature and moisture 
responses but are considered to be near carbon balance on an annual basis.  Agriculture is 
modeled as a significant net sink of carbon reflecting the active removal of biomass.  Irrigated 
agriculture is considered uniformly well watered and hence does not experience any water 
limitation. 

 

Figure A1 Diurnal variation in June NEE. 
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Figure A2.  Seasonal variation in daily mean NEE. 

Appendix B.  Seasonal Cycle of Mean Midday CO2 Concentration Signals 

These figures show the mean midday surface CO2 concentration signals from NEE inside CA 
(B1), NEE outside CA (B2), fossil fuel CO2 inside CA (B3), and fossil fuel CO2 outside CA 
(B4).  Signals are deviations from the CO2 background from outside the modeling domain.  CO2  
signals from NEE show strong seasonality signals due to ecosystem exchange, while signals 
from fossil fuel CO2 show the direction of the mean wind (e.g. predominantly from the north in 
March), and the amount of mixing relative to average flow.  In general, signals from NEE inside 
CA are large enough to be measured with standard instrumentation at many terrestrial locations.  
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Fig B1.  Signals in March.    Fig B2.  Signals in June (as in Fig6). 

 

Fig B3.  Signals in September.   Fig B4. Signals in December.

 27



 

Appendix C.  Seasonal Cycles of Mean Midday Concentration Signals at 
Observing Stations 

The seasonal cycle of mean midday concentration CO2 signal for each source and observing 
station are shown in the figure below.  For each observing station, the seasonal cycle in CO2 
signal is shown by lines connecting symbols with a common station number.  Seasons are 
ordered March, June, September, December.  The standard error of each mean midday value is 
shown as a thick vertical line.  Signals from NEE.in show large seasonal variations because NEE 
varies with ecology, climate, and atmospheric transport.  Signals from fossil fuel combustion 
show smaller seasonal variations that are caused largely by variations in atmospheric transport. 
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