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Preface 
 

The Public Interest Energy Research (PIER) Program supports public interest energy research 
and development that will help improve the quality of life in California by bringing 
environmentally safe, affordable, and reliable energy services and products to the marketplace. 

The PIER Program, managed by the California Energy Commission (Energy Commission), 
annually awards up to $62 million to conduct the most promising public interest energy 
research by partnering with Research, Development, and Demonstration (RD&D) 
organizations, including individuals, businesses, utilities, and public or private research 
institutions. 

PIER funding efforts are focused on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Energy-Related Environmental Research 

• Energy Systems Integration  

• Environmentally Preferred Advanced Generation 

• Industrial/Agricultural/Water End-Use Energy Efficiency 

• Renewable Energy Technologies 

 

The California Climate Change Center (CCCC) is sponsored by the PIER program and 
coordinated by its Energy-Related Environmental Research area. The Center is managed by the 
California Energy Commission, Scripps Institution of Oceanography at the University of 
California at San Diego, and the University of California at Berkeley. The Scripps Institution of 
Oceanography conducts and administers research on climate change detection, analysis, and 
modeling; and the University of California at Berkeley conducts and administers research on 
economic analyses and policy issues. The Center also supports the Global Climate Change 
Grant Program, which offers competitive solicitations for climate research.  

The California Climate Change Center Report Series details ongoing Center-sponsored 
research. As interim project results, these reports receive minimal editing, and the information 
contained in these reports may change; authors should be contacted for the most recent project 
results. By providing ready access to this timely research, the Center seeks to inform the public 
and expand dissemination of climate change information; thereby leveraging collaborative 
efforts and increasing the benefits of this research to California’s citizens, environment, and 
economy. 

For more information on the PIER Program, please visit the Energy Commission’s website 
www.energy.ca.gov/pier/ or contact the Energy Commission at (916) 654-5164. 
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Abstract 
 

Possible future climate changes in California are investigated from a varied set of climate 
change model simulations. These simulations, conducted by three state-of-the-art global climate 
models, provide trajectories from three greenhouse gas (GHG) emission scenarios. These 
scenarios and the resulting climate simulations are not “predictions,” but rather are a limited 
sample from among the many plausible pathways that may affect California’s climate. Future 
GHG concentrations are uncertain because they depend on future social, political, and 
technological pathways, and thus the IPCC has produced four “families” of emission scenarios.  
To explore some of these uncertainties, emissions scenarios A2 (a medium-high emissions) and 
B1 (low emissions) were selected from the current IPCC Fourth climate assessment, which 
provides several recent model simulations driven by A2 and B1 emissions. The global climate 
model simulations addressed here were from PCM1, the Parallel Climate Model from the 
National Center for Atmospheric Research (NCAR) and U.S. Department of Energy (DOE) 
group, and CM2.1 from the National Oceanic and Atmospheric Administration (NOAA) 
Geophysical Fluids Dynamics Laboratory (GFDL).  

As part of the scenarios assessment, a statistical technique using properties of historical weather 
data was employed to correct model biases and “downscale” the global-model simulation of 
future climates to a finer level of detail, onto a grid of approximately 7 miles (12 kilometers), 
which is more suitable for impact studies at the scales needed by California decision makers.   

In current climate-change simulations, temperatures over California warm significantly during 
the twenty-first century, with temperature increases from approximately +3ºF (1.5ºC) in the 
lower emissions scenario (B1) within the less responsive model  (PCM1) to +8ºF (4.5ºC) in the 
higher emissions scenario (A2) within the more responsive model (CM2.1).  Three of the 
simulations (all except the low-emission scenario run of the low-response model) exhibit more 
warming in summer than in winter.   

In all of the simulations, most precipitation continues to occur in winter, with virtually all 
derived from North Pacific winter storms.  Relatively little change in overall precipitation is 
projected. Climate warming has a profound influence in diminishing snow accumulations, 
because there is more rain and less snow, and earlier snowmelt. These snow losses increase as 
the warming increases, so that they are most severe under climate changes projected by the 
more sensitive model with the higher GHG emissions.  
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1.0 Introduction 
In May 2005, the California Energy Commission (Energy Commission) and the 
California Environmental Protection Agency (Cal/EPA) commissioned a report 
describing the potential impacts of climate change on key state resources. It was 
recognized that current climate-change projections agree on certain broad and troubling 
aspects of the future climate and climate influences in twenty-first century California. 
Despite considerable uncertainty in some key details (especially, regional details) of 
future climate change and a good measure of contrast between different global climate 
models, an up-to-date appraisal of potential impacts from the projections available 
would help to inform decision makers as they begin to address and plan for these 
impacts.  Although precise prediction is impossible, it was agreed that it would be 
worthwhile to examine a selection of scenarios of possible climate change, targeted 
regionally to explore California’s future climate, in a manner similar to previous and 
ongoing efforts by the Intergovernmental Panel on Climate Change (IPCC) (Houghton et 
al. 2001), an examination of ecological and related changes in California (Field et al. 
1999),  the U.S. National Climate Change Assessment (National  Assessment Synthesis 
Team 2001), and by scientists in Great Britain to examine potential climate changes in 
the United Kingdom.1 Because of the tight timeframe in which this work was to be 
completed, this assessment focuses on a small subset of available global climate models.   

This work builds upon previous climate model-based studies of possible climate change 
impacts on various sectors in the California region, including a broad assessment of 
possible ecological impacts by Field et al. 1999;  an assessment of a range of potential 
climate changes on ecosystems, health, and economy in California described by Wilson 
et al. 2003;  a study of how a business-as-usual emissions scenario simulated by a low-
sensitivity climate model would afftect water resources in the western United States, 
overviewed by Barnett et al. 2004;  and a multisectoral assessment of the difference in 
impacts arising from high versus low greenhouse gas (GHG) emissions in Hayhoe et al. 
2004.  

As reported by the WMO (2005) “since the start of the twentieth century, the global 
average surface temperature has risen between 0.6°C and 0.7°C (1.08°F and 1.26°F). But 
this rise has not been continuous. Since 1976, the global average temperature has risen 
sharply, at 0.18°C (0.32°F) per decade. In the northern and southern hemispheres, the 
1990s were the warmest decade with an average of 0.38°C (0.68°F) and 0.23°C (0.41°F) 
above the 30-year mean, respectively.” The 10 warmest years for the earth’s surface 
temperature all occurred after 1990 (Jones and Palutikof  2006) and the second or first 
warmest year on record appears to have occurred in 2005  (Jones and Palutikof 2006; 
Hansen et al. 2006). Much of the warming during the last four decades is attributable to 
the increasing atmospheric concentrations of climate change emissions due to human 
activities (Santer et al. 1996; Tett et al. 1999; Meehl et al. 2003).2 

                                                      

1 See www.ukcip.org.uk/resources/publications/documents/UKCIP02_briefing.pdf. 
2 Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Synthesis Report, 
2001. 
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Taking a regional perspective, in California and throughout western North America, 
signs of a changing climate are evident, in part reflecting the global measures noted 
above.  Over the last 50 years, observations reveal trends toward warmer winter and 
spring temperatures, a smaller fraction of precipitation falling as snow instead of rain 
(Knowles et al. 2006), a decrease in the amount of spring snow accumulation in lower 
and middle elevation mountain zones (Mote et al. 2005), an advance in snowmelt of 5 to 
30 days earlier in the spring (Stewart et al. 2005), and a similar shift in the timing of 
spring flower blooms (Cayan et al. 2001).  

A current effort by the international climate-science community to prepare the Fourth 
IPCC Climate Change Assessment provides important background and crucial inputs 
for the studies reported here. In particular, that international assessment has prompted 
and released a large number of climate model simulations using a selected set of the 
IPCC contrasting GHG emission scenarios. Thus, the present effort has used only a few 
of the IPCC simulations to provide concrete examples of possible impacts and has used 
the larger ensembles of projections generated for the IPCC assessment to put those 
particular simulations into perspective and to explore, albeit in limited fashion, two 
major sources of climate-change uncertainty: (1) our incomplete understanding of how 
the climate system responds (as represented by differences between different climate 
models), and (2) the unknowable future of emissions of GHG and other human-made 
contaminants to the atmosphere (as represented by the GHG scenarios considered here). 
The purpose of this paper is to describe the selection of the two climate models, 
properties of the two scenarios that were analyzed, how the global models were 
downscaled to the California region, and noteworthy properties of the model 
simulations of possible future climate change that are relevant to California impacts. 
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2.0 Natural Variability versus Climate Forcing 
In assessing climate change impacts, it is important to determine whether or not 
observed historical climate changes in California exceed the “noise” level of natural 
internal climate variability, as estimated from unforced climate model simulations.  

This work is based upon previous climate change detection studies at global scales (e.g., 
Santer et al. 1996; Hegerl et al. 1996, 1997; North and Stevens 1998;  Tett et al. 1999; Stott 
et al. 2000) and also in large regions (Stott 2003; Zwiers and Zhang 2003; Spagnoli et al. 
2002; Karoly and Braganza 2005), including North America (Karoly et al. 2003).  This 
study estimated the observed linear trend in surface temperature from the University of 
Washington monthly 1/8-degree gridded meteorological dataset (Maurer et al. 2002).  
We estimated the maximum possible trend due to natural climate variability (within a 
90% confidence interval) from seven multi-century, unforced “control” simulations, by 
fitting linear trends to overlapping 50-year segments (following the approach of Karoly 
et al. 2003; Santer et al. 1995). These simulations are available in the context of the IPCC 
Fourth Assessment (AR4) and were performed using models that simulate a warming in 
California during the twentieth century: cccma_cgcm3_1, csiro_mk3_0, giss_aom, 
iap_fgoals1_0_g, and ipsl_cm4, gfdl cm2.1, and pcm 1.  

The statewide-average annual-mean surface temperature increased by 0.57°C (1.03°F) 
during 1949–1999 (Figure 1a and 1b). This warming slightly exceeds the limits of natural 
internal climate variability estimated from the unforced climate model simulations (with 
90% level of confidence). This suggests the possibility that the observed trend is not 
entirely due to natural fluctuations of the atmosphere-ocean climate system alone, and 
therefore must be explained in part by the influence of external forcings.  Because the 
observed warming over the last few decades shows a pronounced seasonality, with 
larger warming  during winter and spring than during summer and fall (Figure 1a), this 
analysis was also conducted separately for each season (Figure 1b).  During summer and 
fall seasons, the observed warming trends are small and can be due to natural internal 
variability and/or a combination of counteracting external factors. On the other hand, 
during winter and spring, the observed warming trends during 1949–1999 were quite 
large in comparison to the natural internal variability contained in the model runs. 

The results shown here suggest that the winter and spring warming that has occurred in 
the California region over the last few decades is very unlikely to have been caused  only 
by natural climate variations. The implication is that some of this warming was the 
result of external influence(s), of either human (e.g., emission of GHGs) or natural origin 
that have perturbed California’s climate. The formal attribution of California’s climate 
change to specific anthropogenic and natural forcings is, however, beyond this study’s 
scope. 
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Figure 1a.  10-year running average of temperature anomalies (deg C) for 
California relative to the 1961-1990 base period average using annual (black), 

winter (blue),spring (green), summer (red), fall (brown) means. The time-series are 
computed from the UW monthly 1/8-degree gridded meterological dataset. 

  

 

 

 

 

 

 

Figure 1b.  Estimated natural variability of California temperature without forcing 
(bars), and observed temperature change (dots) during the 1950-2000 historical 

record.  
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3.0 Scenarios and Models Selected 
Criteria for model selection included a freely coupled, non-flux-correcting formulation 
and having a horizontal resolution of 250 km (155 miles) or higher.  It was also required 
to produce a realistic simulation of aspects of California’s recent historical climate— 
particularly the distribution of temperature and the strong seasonal cycle of 
precipitation that exists in this region. In addition, models selected should contain 
realistic large-scale features, such as the spatial structure of precipitation. They should 
also include realistic variability at interdecadal and longer time scales during the 
historical simulations, which should include tropical variability and associated 
teleconnections to extratropical variability (e.g., Dettinger et al. 2001), including those 
germane to California (Figures 2-4, and 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Observed and modeled precipitation, Northern and Southern California 
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Figure 3.  Tropical Pacific sea surface temperature (SST),  Nino 3.4 region, GFDL 
and PCM historical simulations, and NOAA CPC observations, 1950-2000.  
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Figure 4.  Correlation between Nino 3.4 SST and precipitation across the globe 
from simulations GFDL (above) and PCM (middle), along with observations from  

NCEP/NCAR Reanalysis  www.cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml  
(below) demonstrate reasonably strong connection between tropical Pacific ENSO 

fluctuations and extratropical precipitation. 
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Other criteria for model selection were the availability of climate model output data and 
the published track record of the modeling group. Also, models were chosen which 
would provide different levels of sensitivity to GHG forcing (Figure 5). Taken together, 
these criteria yielded two global climate models (GCMs), including PCM (Meehl and 
Washington group at National Center for Atmospheric Research (NCAR) in Boulder 
Colorado, see Washington et al. 2000; Meehl et al. 2003) and GFDL CM2.1 (National 
Oceanic and Atmospheric Administration (NOAA) Geophysical Dynamics Laboratory, 
Princeton New Jersey; see Stouffer et al. 2005; Delworth et al. 2005; Knutson et al. 2005).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Climate sensitivity as gaged by difference in simulated gobal 
temperature over California.  There are two runs each for GFDL  (GFDL 0 and 

GFDL 1), and PCM (PCM2 and PCM3). 

 

For parts of the overall scenarios study, the Hadley Center HadCM3 model (Gordon et 
al. 2000; Pope et al. 2000) was also employed using analyses and results already obtained 
(Hayhoe et al.  2004).  Because the HadCM3 model  was already described and evaluated 
in the Hayhoe et al. 2004 study, it will not be included in this description. 

Greenhouse gas emissions scenarios A2 (medium-high emissions) and B1 (low 
emissions) choice was based upon decisions made by IPCC4 (Nakic’enovic’ et al. 2000), 
and availability of relatively crucial output from model climate simulations.  Scenario 
A1fi (high emissions) was used in the recent Hayhoe et al. (2004) study to assess 
implications of high and low GHG emissions scenarios and associated  climate change 
impacts in California, and is included here because some of the related studies in this 
collective work report or compare those results.  
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As shown in Figure 6, the B1 scenario has global (including California) CO2 emissions 
peaking at approximately 10 gigatons per year (Gt/yr) in mid-century before dropping 
below current-day levels by 2100. (This corresponds to a doubling of CO2 concentration 
relative to its pre-industrial level by the end of the century.) For the A2 scenario, CO2 
emissions continue to climb throughout the century, reaching almost 30 Gt/yr, so that 
by the end of the century CO2 concentration reaches more than triple its pre-industrial 
level. The A1fi scenario has high emissions through about 2080 that level off from 2080 
through 2100, and result in CO2 concentrations that reach about 950 parts per million 
(ppm) by 2100.  A broad discussion of projections of climate change using climate model 
simulations is presented by Cubasch et al. 2001 as part of the Third IPCC Climate 
Change Assessment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  GHG (CO2) emissions (above) and atmospheric concentrations (below) 
prescribed by IPCC for several emissions scenarios, including B1, A2 and A1Fi. 

Both the GFDL and PCM groups performed historical simulations—the 20C3M 
experiments (see www-pcmdi.llnl.gov/projects/cmip/ann_20c3m.php)—that allow us to 
compare global climate model performance to historical observations over late 
nineteenth and the entire twentieth centuries. The 20C3M model runs for GFDL cover 
1861–2000, and for PCM they cover 1890–1999.  In the 20C3M simulations, both models 
account for historical estimates of inputs from volcanic eruptions, changes in solar 
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irradiance, and anthropogenic GHG and aerosol loading (Delworth et al. 2005;  Meehl et 
al. 2003). The 1961–1990 period of modeled climate is used in the present study as a 
climatology, a benchmark to compare recent modern climate with future climate 
projected by each of the models, respectively. 

  

 

 

 

 

 

 

 

 

 

Figure 7.  Global precipitation for January and July from Reanalysis (model 
version of observations), PCM, and GFDL historical model runs  
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4.0 Characteristics of Model Simulations 
There are a very large set of considerations in evaluating the global climate model 
simulations, as for example presented in the IPCC Third Assessment (Cubasch et al. 
2001). But in the following, because the impacts of concern in this project are driven 
primarily by changes in climate at the surface, we focus on a just a few relatively simple 
characteristics, mostly related to temperature and precipitation in the California region. 

Each of the model simulations contains symptoms of global climate change over the 
California region. As we know from previous studies, there is more consistency in the 
changes of some elements (such as temperature) than others, such as precipitation.  Due 
to differences in the two models’ sensitivities and responses to GHGs and other forcings, 
there are substantial differences between the two models. The PCM has relatively low 
sensitivity of global and regional temperature to GHG forcing, and GFDL CM2.1 has 
relatively high sensitivity, as shown from a ranking of the increase in temperature 
change from a low-emissions scenario B1 simulation to a medium-high-emission 
scenario A2 simulation, charted for a larger set of IPCC models in Figure 5.  
Nonetheless, there are significant differences between the two GHG emission scenarios 
that grow over time, an aspect of this problem which has been emphasized in previous 
studies (Houghton et al. 2001; Hayhoe et al. 2004) and is again an important theme in the 
present results. Northern California temperature warms significantly between 2000 and 
2100, from approximately 3ºF (1.5ºC) in the lower emissions scenario within the less-
responsive model to 8ºF (4.5ºC) in the higher emissions scenario within the more-
responsive model (see Table 1). To put this in perspective, these projected temperature 
changes over the next century are slightly larger than the difference in annual mean 
temperature between Monterey and Salinas, and between San Francisco and San Jose, 
respectively. The difference in annual mean temperatures between Monterey (65.3ºF) 
(18.5ºC) and Salinas (67.8ºF) (19.9ºC) is 2.5ºF (1.4ºC) and the difference between San 
Francisco Mission Delores (63.6ºF) (17.6ºC) and San Jose (71.0ºF) (21.7ºC) is 7.4ºF (4.1ºC).   

Regardless of which model is employed, the warming is greater for the higher-emission 
scenario (SRES A2) than for the lower-emission scenario (SRES B1). The rate of 
temperature increase over the 2000–2100 period is approximately linear in each of the 
four model runs, although there is substantial year-to-year variation. Additionally, from 
available A1fi simulations conducted in an earlier study by Hayhoe et al. (2004) 
temperature changes were slightly higher than those for the A2 simulations examined 
here, judging from PCM simulations, which produce 6.8ºF (3.8ºC) warming in A1Fi 
(Table 1 of Hayhoe et al. 2004) and approximately 4.8ºF (2.7ºC) warming in A2, as shown 
in Table 1.   

In the first 30-year epoch, 2005–2034, the change in temperature, even in the lower 
response model under the lower-emissions scenario, amounts to an increase of  summer 
and winter temperature by more than 0.5ºC (0.9ºF). This increase is sufficient to 
reduce(increase) substantially the number of cold(warm) temperature outbreaks in 
summer and winter temperature levels. By the last 30-year epoch considered, 2070–2099,  
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Table 1. Temperature and precipitation changes, GFDL and PCM B1 and A2 simulations, Northern and Southern California. 
Temperature units are ºC, precipitation in mm.  Mean values are provided for historical (1961–1990) period, and changes 
between successive 30-year periods are shown in subsequent columns for the models/emission scenarios, as indicated. 

 

 2005–2034 2035–2064 2070–2099 

1961–1990 GFDL PCM GFDL PCM GFDL PCM Change in 
State AVG 
Temp and 
Precip 

un
it

s GFDL PCM A2 B1 A2 B1 A2 B1 A2 B1 A2 B1 A2 B1 

Annual °C 9.3 8.0 1.5 1.4 0.5 0.5 2.3 2.2 1.3 .8 4.5 2.7 2.6 1.5 

Summer (JJA) °C 21.5 17.9 2.1 1.7 0.9 0.6 3.4 2.6 1.7 1.1 6.4 3.7 3.3 1.6 

Winter (DJF) °C -.46 .08 1.4 1.3 0.1 0.7 1.7 2.1 0.9 2.4 3.4 2.3 2.3 1.7 

                

Annual Mm/% 1098 750 +0.3 +2.0 -0.4 +6.8 -3.0 -1.9 -2.0 +2.8 -17.5 -9.3 -2.4 0.0 

Summer (JJA) Mm/% 13.7 13.7 -29.2 -5.8 +27.7 +43.8 -67.2 -13.1 +35.1 -17.5 -67.9 -43.1 -29.9 -3.6 

N
O

C
A

L
 

Winter (DJF) Mm/% 648.7 386.1 -1.3 +12.9 -5.0 +13.3 +6.2 -0.1 -5.0 -2.0 -9.1 -5.6 +4.3 +4.4 
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Table 1. (continued) 

 

 2005–2034 2035–2064 2070–2099 

1961–2000 GFDL PCM GFDL PCM GFDL PCM Change in 
StateAVG 
Temp and 
Precip 

U
ni

ts
 GFDL PCM A2 B1 A2 B1 A2 B1 A2 B1 A2 B1 A2 B1 

Annual °C 12.2 14.3 1.3 1.3 0.5 0.6 2.3 2.1 1.2 0.8 4.4 2.7 2.5 1.6 

Summer 
(JJA) 

°C 23.2 23.4 1.7 1.6 0.4 0.5 3.1 2.3 1.3 0.8 5.3 3.2 2.6 1.5 

Winter (DJF) °C 2.4 5.4 1.0 1.0 0.2 0.7 1.7 1.6 1.0 0.6 3.3 2.0 2.4 1.6 

                

Annual mm/% 537 342 -6.1 -1.7 +7.0 +17.5 -1.7 -11.2 +7.0 -1.8 -26.3 -21.8 +7.9 +7.0 

Summer 
(JJA) 

mm/% 7.2 5.4 +48.7 -12.5 -7.4 +5.6 -59.7 -50.0 +35.2 +33.3 -44.4 -62.5 -11.1 +1.9 

SO
C

A
L

 

Winter (DJF) mm/% 320.3 186.7 -0.7 +0.8 +1.1 +31.9 +8.7 -8.6 +6.3 -6.1 -1.7 -25.7 +8.4 -0.8 
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for each of the two scenarios considered here and the A1fi scenario analyzed by Hayhoe 
et al. 2004, effects of accumulated GHG emissions are greatest,  increases in temperature 
are largest, and the resultant responses of other measures are largest. Over northern 
California, the summer temperature increase for the higher emissions scenario within 
the more-responsive model is 11.6ºF (6.4ºC), while that for the lower emissions scenario 
is 6.6ºF (3.6ºC). Counts of seasonal temperature values falling in the lower and middle 
tercile classes and also in the below-median category for Northern and Southern 
California locations in Tables 2a and 2b reveals a severe change in the seasonal 
temperature distribution. By the 2070–2099 period, for any of the model runs, the 
temperature increases are sufficient to nearly eliminate the seasonal mean temperatures 
falling into the lower third of the present historical distribution, with no more than two 
winters and one summer in this category of those contained in the 30-year period.  The 
warming also greatly reduced the number of seasonal temperature values occurring in 
the middle third of the distribution to no more than 9 in Northern California and no 
more than 4 in Southern California. At both the locations, it also sharply reduces the 
number that fall below the historical median seasonal mean temperature to no more 
than three seasons of the entire population of 30 seasons within this period.. 

An important aspect of the model results is that three of the simulations (all except the 
low-emission scenario run of the low response model) yield more warming in summer 
than in winter. In the highest emission (A2) scenario for the PCM and GFDL, 
simulations of mean temperature over northern California exhibit temperature increases 
by the end of the twenty-first century by 2.6ºC (4.7ºF) and 5.3ºC (9.5ºF) in summer and 
2.4ºC (4.3ºF) and 3.3ºC (5.9ºF) in winter, respectively. If a summer amplification of the 
projected warming materializes, it has important implications for impacts such as 
ecosystems, agriculture, water and energy demand, and the occurrence of heat waves, 
which can have consequences for public health and the economy. 

There is no indication from the projections that there will be changes in the 
Mediterranean seasonal precipitation regime in California.  This is indicated by the 
monthly mean precipitation for the B1 and A2 simulations of PCM and GFDL CM2.1 
over northern California and southern California locations in Figure 8.  In all of the 
simulations, most precipitation continues to occur in winter, with virtually all of it 
derived from North Pacific winter storms, as demonstrated by the correlations between 
Northern California monthly precipitation and 500 hectopascal (hPa) height (500 
millibar height), mapped over the Pacific and western North America domain in Figure 
9 for the 2070–2099 period from the A2 simulations of GFDL and PCM in comparison to 
those from observations. Summer precipitation changes only incrementally, and actually 
decreases in some of the simulations, so there is no simulated indication of a stronger 
thunderstorm activity. Also, relatively small changes in overall precipitation are 
projected by the simulations, amounting to a less than 20%, and, usually less than 10%, 
change in any of the four projections. This is consistent with the fact that although, in 
general, under global warming, global rates of precipitation are projected to increase, 
these increases tend to be geographically focused in the tropics and higher latitude 
extra-tropics. In most current projections of global warming, subtropical and lower-
middle-latitude regions exhibit little change in precipitation, and in some cases become 
drier. In the present investigation, each of the model runs is characterized by large  
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Table 2a.  Seasonal temperature occurrences, Northern California. Temperature units are  ºCelsius. σ is standard deviation, 
µ is mean, m is median, T1 and T2 are lower and upper tercile thresholds of (1961–1990) historical distribution, N1 is 

number of seasons within period whose mean temperature falls into lower tercile,  N1+N2 is number falling into lower and 
middle terciles, Nm is number falling into below-median category. 

 

 Historical 2005-2034 2035-2064 2070-2099 

Model 
Scenario 
Months 

� � T1 T2  m N1 N1+N2 Nm N1 N1+N2 Nm N1 N1+N2 Nm 

GFDL A2 
DJF 

1.486 -.456 -.95 .5 -.098 0 11 6 4 9 5 0 3 1 

GFDL A2 
JJA 

1.234 21.58 20.99 22.14 21.67 0 5 4 0 0 0 0 0 0 

GFDL B1 
DJF 

1.486 -.456 -.95 .5 -.098 2 13 9 1 4 2 1 5 3 

GFDL B1 
JJA 

1.234 21.58 20.99 22.14 21.67 0 2 0 0 2 1 0 0 0 

PCM A2 
DJF 

1.921 .0868 -.52 1.17 .546 10 22 17 2 18 11 0 7 2 

PCM A2 
JJA 

0.901 17.96 17.59 18.42 17.89 1 8 4 1 1 1 0 0 0 

PCM B1 
DJF 

1.921 .0868 -.52 1.17 .546 4 19 9 7 20 15 0 9 3 

N
O

C
A

L
 

PCM B1 
JJA 

0.901 17.96 17.59 18.42 17.89 5 12 8 1 7 3 2 4 3 
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Table 2b.  Seasonal temperature occurrences, Southern California. Temperature units are  ºCelsius. σ is standard deviation, 
µ is mean, m is median,  T1 and T2 are lower and upper tercile thresholds of (1961-1990) historical distribution,  N1 is 

number of seasons within period whose mean temperature falls into lower tercile,  N1+N2 is number falling  into lower and 
middle terciles, Nm is number falling into below-median category.  

 Historical 2005–2034 2035–2064 2070–2099 

Model 
Scenario 
Months 

� � T1 T2  m N1 N1+N2 Nm N1 N1+N2 Nm N1 N1+N2 Nm 

GFDL A2 
DJF 

1.227 2.48 1.93 3.24 2.51 1 13 5 2 5 4 0 1 0 

GFDL A2 
JJA 

1.202 23.20 22.79 24.01 23.14 1 3 2 0 0 0 0 0 0 

GFDL B1 
DJF 

1.227 2.48 1.93 3.24 2.51 2 12 8 1 7 3 1 4 1 

GFDL B1 
JJA 

1.202 23.20 22.79 24.01 23.14 0 4 1 0 2 0 0 0 0 

PCM A2 
DJF 

1.416 5.45 4.71 6.27 5.83 7 18 14 2 11 5 0 2 0 

PCM A2 
JJA 

1.043 23.58 22.96 24.01 23.58 3 13 11 1 4 3 0 0 0 

PCM B1 
DJF 

1.416 5.45 4.71 6.27 5.83 2 15 5 4 17 11 0 4 3 

SO
C

A
L

 

PCM B1 
JJA 

1.043 23.58 22.96 24.01 23.58 4 19 11 1 11 4 0 4 2 
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interannual to decadal fluctuations of precipitation, and modest changes, not 
consistently positive or negative, in annual precipitation during the 2000–2100 period.  
In Northern California, by end of century, projected precipitation increases slightly or 
does not change in one model (PCM), and decreases by 10%–20% in the other model 
(GFDL). Analysis of California precipitation changes produced under B1 and A2 
emissions scenarios in 11 global climate models by Maurer (2005) also finds only modest 
changes in annual precipitation, but an increase in precipitation in winter months and a 
decrease in spring months.  

Moreover, little change in year-to-year variability of precipitation or temperature is 
evident in the model simulations, as will be shown below from plots of ensembles of the 
same model and same scenario, simply run in perturbed fashion using different initial 
conditions. Whether the variability is high or low is an important issue because large 
impacts often occur during  anomalous years owing to floods, drought, heat waves, and 
other extremes in weather and climate. The frequency of warm tropical events (El Niños) 
remains about the same as was exhibited in the historical simulations, and model El 
Niño events continue to be related to anomalous precipitation patterns over California. 

To put the two scenarios and the two GCMs that are the focus of this assessment into 
broader perspective, it is useful to compare them with projections of climate changes 
over California from a larger collection of simulations. Following an analysis by 
Dettinger (2005 and in press), projection distributions were estimated for a much larger 
subset of the Fourth IPCC Assessment simulations, including 84 simulations from a total 
of 12 different  climate models responding to  three different emission scenarios: higher 
(A1b), middle-high (A2), and low (B1). This larger ensemble of simulations describes a 
range of projected temperature changes, all positive, from relatively modest to quite 
large (from about +2ºC to +7ºC, or +3.6ºF to +12.6ºF). The distribution of precipitation 
changes includes both positive and negative changes that cluster with little change 
around present-day averages (Figures 10 and 11). It can be seen from Figures 10 and 11 
and Table 1 that, throughout the 100 year simulation, California conditions projected by 
PCM remain in the lower half of the temperature-change distributions, exhibiting a 
relatively modest degree of warming. The small changes experienced by PCM B1 and 
A2 are close to the center of the overall precipitation-change distributions. In contrast, 
Figure 10 and 11 show that California temperatures projected by GFDL and HadCM3 
are in the warmer half of the overall temperature-change distributions. The GFDL and 
HadCM3 projections of precipitation tend to be in the drier parts of the precipitation-
change distributions. As discussed by Maurer  (2005), when  considering  several of  the 
recent model simulations, there is a tendency for precipitation to increase somewhat in 
winter months and to decrease in spring months.   

 Importantly, the statistical distributions of projections from the Fourth Assessment 
ensemble of models (from which the projections focused on here were drawn) are not 
qualitatively different from the corresponding distributions constructed from a smaller 
set of simulations that were contributed to the Third IPCC Assessment, published in 
2001 (Dettinger 2005a,b). The Fourth Assessment projections of temperature changes 
yield about 0.85ºC (1.53ºF) less warming (overall) by end of twenty-first century than did 
the previous Third Assessment projections. Notably, the Fourth Assessment projections 
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of precipitation changes do not include the influence of large projected increases in 
precipitation from the UK’s HadCM2 or the Canadian CCCM models that appeared 
among the Third Assessment projections. Thus the resultant distributions are more 
consistently centered around historical values, as illustrated in Figures 9, 10a, and 11. 
The overall similarities between the current projections and previous projections 
includes the PCM and GFDL models and B1 and A2 emission scenarios selected here— 
and indicate that results from many past climate-change studies continue to be 
informative and can usefully be compared to the present results. In the Fourth 
Assessment ensemble of projections considered here, both wetter and drier projections 
than today’s precipitation levels have emerged from various of the warmest models—
and likewise for the coolest models—as indicated by the model changes superimposed 
on the distributions of changes from recent IPCC simulations in Figures 10 and 11 and 
the time series of projected temperature and precipitation changes from the present 
models versus the larger set of IPCC simulations in Figures 12a and 12b. Thus, the 
projected mean precipitation changes are not correlated with the projected mean 
temperature changes from a given model, as shown by the joint probability of 
temperature and precipitation changes in Figure 10. 

An ensemble of simulations for historical conditions or for a given GHG emission 
scenario indicates the internal variability of a particular climate model. The intra-
scenario variability for the two models is fairly high, as seen from a set of three 
ensembles of (a) winter and (b) summer temperature from the PCM A2 simulation in 
Figure 13a, and from a set of historical and climate change simulations of annual 
precipitation in Figure 13b.  Despite this “natural model variability,” the ensembles 
seem to reinforce the general character of the temperature warming; or alternatively, the 
varying, but only incrementally changing, volume of precipitation. 

 

 



19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Projected Precipitation 2070-2099, Northern and Southern California.  
Compare with GCM historical and observed precipitation in Figure 1.  
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Figure 9.  Correlations between Nov-Mar mean precipitation, Northern California, 
and Nov-Mar 500HPa height anomalies at each point in Pacific-western North 

America domain for (1961-1990) historical period and for 2070-2099 of GFDL and 
PCM  A2 simulations, and for observations from NCAR/NCEP Reanalysis. 
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Figure  10.  Joint Probability Distribution,  Temperature and Precipitation Change 
2070-2099,  constructed from ensemble of IPCC AR4 model simulations.  This 

shows, from a sampling of a collective of three different emissions scenarios run 
by 13 different global climate models,  the probability of a given pairing of 

changes of temperature and precipitation in 2070-2099 relative to their historical 
means during 1961-1990.  Isopleths define loci of points having equal probability, 

as labeled.  Superimposed upon the matrix of joint probablilities are specific 
results considered in the present Scenarios Project:  GFDL CM2.1 (G), PCM (P), 

and HadCM3 (H) models, under emission scenarios B1 (b), A2 (a), and A1fi (f)  are 
labeled.  
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Figure 11.  Distribution of changes in Northern California temperature (in ºC, 
above) and precipitation (in %, below) constructed from a sampling technique 

(Dettinger 2005) applied to recent set of IPCC 4th Assessment climate simulations, 
13 models, 3 GHG emission scenarios). The temperature change plot shows that, 
by 2070-2099, virtually all simulations experience warming, by a broad range of 
amounts, but with a mean value of about +3C. On the other hand, concerning 

precipitation there are nearly as many simulations that become wetter as those 
that become drier, although by 2070-2099, there is a slight concensus to become 

drier, with the mean and most frequent value of precipitation change to be a 
decrease of just a few percent of its historical mean.  Distributions are shown for 3 
time blocks: 2005-2034, 2035-2064, and 2070-2099.  The changes exhibited by the 

PCM and GFDL A2 and B1 simulations used in this study are indicated, for 
comparison with the entire family of climate projections.   
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Figure 12a.   Ensemble of Northern California temperature projections from 39 
AR4 model simulations with PCM (left) and GFDL (right)  B1 and A2 runs 

highlighted  Note that models are coupled ocean atmosphere GCM’s, and while 
they are driven by external forcings such as solar variability, volcanic aerosols, 

greenhouse gases and anthopogenic aerosols, they are not guided by ocean 
surface temperature or atmospheric circulation patterns that would allow them to 

replicate the actual observed climate variability during the historical period.  
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Figure 12b.  Ensemble of Northern California precipitation projections from 39 
AR4 model simulations with PCM (left) and GFDL (right)  B1 and A2 runs 

highlighted  
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Figure 13a. Northern California Temperature Variability between four ensemble 
members, PCM A2 simulations, with simulation used in this study highlighted. 
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Figure 13b.  Northern California Precipitation Variability between four ensemble 
members, GFDL A2 simulations, with simulation used in  this study highlighted 
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5.0 Bias Correction and Spatial Downscaling of GCM Output 
The selection of GCMs to include in this study required that they exhibit, on a broad 
spatial scale,  seasonal patterns of simulated precipitation and temperature for the last 
several decades that were similar to those from the recent observed historical record. 
However, even the best models display biases on regional scales that are large enough 
that they may obscure the impacts of climate change. This problem has inspired the 
development of many different techniques for extracting the meaningful signals of 
future climate evolution from the raw GCM output, while at the same time reproducing 
historical climate patterns on the landscape at local scales. Using consistent methods to 
process the data allows a comparison of both means and interannual variabilities in 
future periods to a historical period that reflects observed conditions. Many studies have 
used a shift or scaling factor derived by comparing a climate model’s future 
precipitation or temperature to its climatology; applying this shift to a historical record 
(Lettenmaier and Gan 1990; Miller et al. 2003). While this method effectively removes the 
bias of the mean GCM climatology from the future climate, it does not address the 
potential bias in the variability of the climate model and can constrain inter-annual 
variability to the historic observed levels. 

Different methods of downscaling—that is, taking the large-scale signal from the GCM 
and translating it to the local scale—have been developed. This can be done with 
dynamical or statistical methods [see for example (Giorgi et al. 2001; Benestad 2001; 
Mearns et al. 2001)]. The principal disadvantage of dynamic downscaling is that it 
requires intensive computational resources, which for the four 150-year transient 
simulations of this study would have been impossible, requiring months to years of 
computing time.  This study employed a statistical bias correction technique and 
downscaling technique originally developed by Wood et al. (2002) for using global 
model forecast output for long-range streamflow forecasting. This technique was later 
adopted to downscale GCM output for use in studies examining the hydrologic impacts 
of climate change (Hayhoe et al. 2004; Maurer and Duffy 2005; Payne et al. 2004; 
Vanrheenen et al. 2004). This is an empirical statistical technique that maps precipitation 
and temperature during a historical period (1950–1999 for this study) from the GCM to 
the concurrent historical record, which for this study is taken to be a gridded National 
Climatic Data Center Cooperative Observer station data set (Maurer et al. 2002). This 
data set, developed at a spatial scale of 1/8º (about 7 miles  (12 km)), was aggregated to 
a 2° latitude-longitude spatial resolution.   

The combined bias correction/spatial downscaling method used in this study has been 
shown to compare favorably to different statistical and dynamic downscaling techniques 
(Wood et al. 2004) in the context of hydrologic impact studies. For precipitation and 
temperature, cumulative distribution functions (CDFs) are built for each of 12 months 
for each of the 2° grid cells for both the gridded observations and each GCM (first 
interpolating raw GCM data onto a common 2º grid) for the historical period (1950–
1999). Global climate model quantiles are then mapped onto the climatological CDFs for 
the entire simulation period. For example, if precipitation at one grid point from the 
GCM has a value in January of 2050 equal to the median GCM value (for January) for 
1950–1999, it is transformed to the median value of the January observations for 1950–
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1999. For temperature, the linear trend is removed prior to this bias correction step, and 
is replaced afterward, to avoid increasing sampling at the tails of the CDF as 
temperatures rise. Thus, the probability distributions of the observations are reproduced 
by the bias-corrected climate model data for the overlapping historical period, while 
both the mean and variability of future climate can evolve according to GCM 
projections. 

The GFDL model has a resolution (of the atmospheric component) of 2.5º longitude by 
2.0º latitude (approximately 137 mi x 137 mi  (220 km x 220 km) per grid cell), and the 
PCM uses a standard T42 resolution (approximately 2.8º, or 155 mi x 186 mi (250 km x 
300 km) in California). A general idea of the spatial resolution of the GCMs can be seen 
from the temperature and precipitation maps in Figures 14 (right side) and 15 (top), 
respectively. As is clear, the spatial scale of the GCMs is very large compared to the scale 
of interest for many impact studies. For example, the area of one GCM atmospheric grid 
cell (simulated essentially as one area of constant elevation and land surface condition) 
is more than 10 times as large as the entire American River basin upstream of Folsom 
Dam. The Wood et al. (2002) statistical method interpolates the bias-corrected GCM 
anomalies, expressed as a scale factor (for precipitation) and shift (for temperature) 
relative to the climatological period at each 2° GCM grid cell to the centers of 1/8 degree 
grid cells over California. These factors are then applied to the 1/8 degree gridded 
historical precipitation and temperature (see Figure 14, left side and Figure 15, lower. 
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Figure 14.  Temperature change from GFDL A2 simulation (right), and downscaled 
temperatures for (1961–1990) and (2070–2099) using Wood et al. (2002) statistical 

scheme (left). 
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Figure 15.  California precipitation 2070-2099, 1961–1990 and change from PCM 
(above) and high resolution representation from VIC statistical downscaling 

(below) for JJA and DJF. 
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6.0 Hydrologic Modeling 
To generate supplemental meteorological forcing data (e.g., radiative forcing, humidity), 
as well as to derive land surface hydrological variables consistent with the downscaled 
forcing data, the variable infiltration capacity (VIC) model (Liang et al. 1994; Liang et al. 
1996) was used. VIC is a macroscale, distributed, physically based hydrologic model that 
balances both surface energy and water over a grid mesh, and has been successfully 
applied at resolutions ranging from a fraction of a degree to several degrees latitude by 
longitude. The VIC model includes a “mosaic” land surface scheme, allowing a 
statistical representation of the sub-grid scale spatial variability in topography and 
vegetation/land cover. This is especially important when simulating the hydrologic 
response in complex terrain and in snow-dominated regions. To account for subgrid 
variability in infiltration, the VIC model uses a scheme based on work by Zhao et al. 
(1980). The VIC model also features a nonlinear mechanism for simulating slow 
(baseflow) runoff response, and explicit treatment of a vegetation canopy on the surface 
energy balance. Following the simulation of the water and energy budgets by the VIC 
model, a second program is used to route the derived runoff through a defined river 
system to obtain streamflow at specified points. The algorithm used in this study, 
developed by Lohmann et al. (1996), has since its development been employed in all 
simulations of streamflow using output from the VIC model. The VIC model has been 
successfully applied in many settings, from global to river basin scale (Abdulla et al. 
1996; Maurer et al. 2001; Maurer et al. 2002; Nijssen et al. 1997; Nijssen et al. 2001), as 
well as in several studies of hydrologic impacts of climate change (Christensen et al. 
2004; Hayhoe et al. 2004; Maurer and Duffy 2005; Payne et al. 2004; Wood et al. 2004). 
For this study, the model was run at a 1/8-degree resolution (measuring about 150 km2 
(58 mile2) per grid cell) over the entire California domain, including all land surface area 
between latitudes 32ºN and 44ºN and west of longitude 113ºW. For deriving 
streamflows within the Sacramento-San Joaquin river basin the identical 
parameterization to VanRheenen et al. (2004) was used. 

Although precipitation changes only modestly over the period of the climate simulation, 
climate warming is projected to reduce snow accumulation in California. This is  
because warming causes more of the precipitation to fall as rain and less as snow 
(Knowles et al. 2006). Such changes in precipitation form (more rain and less snow) are 
indicated by substantial changes in daily temperature during days with precipitation, 
shown in Figure 16 for Northern California from the GFDL model. Notably, minimum 
temperatures tend to be warmest during days with the heaviest precipitation. For each 
model and each emission scenario, all precipitation categories, including dry days, 
exhibit a shift to warmer temperatures in the 2070–2099 period, relative to the historical 
climatological distribution. 

During the historical period, snow accumulation has already shown losses of order 10% 
of April 1 snow water equivalent (SWE) across the western conterminous United States 
(Mote et al 2005), and is expected to melt earlier as climate warming continues (Knowles 
and Cayan 2002; Wood et al. 2004; Maurer and Duffy 2005). Each of the climate 
simulations, when used as input to the VIC hydrologic model, yields substantial losses 
of spring snow accumulation over the Sierra Nevada mountains. These losses become 
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progressively larger as warming increases during the course of the twenty-first century. 
The losses are also largest by end of century in projected responses to the simulated 
climates from the more sensitive model under the higher GHG emissions. As depicted in 
Table 3, and Figures 17, 18, and 19,  the losses (negative) or gains (positive) of April 1 
snow water equivalent (SWE) in the San Joaquin, Sacramento, and Trinity drainages, as 
percentages of (1961–1990) historical averages, range  from +6% to -29% (for the 2005–
2034 period), from -12% to -42% (for 2035–2064), and from -32% to -79% (for the 2070–
2099 period). The GFDL model, with its greater temperature sensitivity to increased 
GHG concentrations, produces snowpack losses about twice as large as those produced 
by the PCM. Most but not all of this difference can be ascribed directly to the projected 
warmings. However, the amounts of snowfall, and thus snowpack, also vary from 
model to model because twenty-first century precipitation in the PCM simulations 
ranges from slightly wetter to about the same as historical levels; whereas, the GFDL 
simulations become somewhat drier than historical levels. For both models, snowpack 
losses are greatest in the warmer, more GHG-emitting (A1) scenario. By 2070–2099, 
virtually no snow is left below 1000 m (3280 feet) under this scenario. In terms of water 
storage volume, snow losses have greatest impact in relatively warm low-middle and 
middle elevations between about 3280 feet (1000 m) and 6560 feet (2000 m) , with losses 
of 60% to 93% and between about 6560 feet (2000 m) and 9840 feet (3000 m), with losses 
of  25% to 79%. Because the higher elevations of the Sierra Nevada are skewed to the 
southern portion of the range, the heaviest reductions in snow accumulation occur in the 
central and northern portions of the mountain range (Figure 19). 
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Figure 16.  Distribution, binned by 1ºC intervals, of daily minimum temperature 
(Tmin) on days when precipitation is in upper, middle, lower tercile of daily 

precipitation amounts that exceed “drizzle” category, in addition to days with zero 
precipitation from GFDL A2 (left) and B1 (right) simulations.  Open and red bars 

show contribution to frequency distributions from  historical (1961-1990) and 
(2070-2099) periods, respectively. Frequency bins lower than -10C and greater 

than +10ºC are omitted. 
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Table 3.  Change in April 1 snow accumulation, San Joaquin, Sacramento, and parts of Trinity drainages from VIC 
hydrologic model.  Similar computations for HadCM3 A1fi and B1 simulations and for PCM A1fi simulation are presented in 

Table 1 of Hayhoe et al. 2004. 

 

 

 2005–2034 2035–2064 2070–2099 

1961-1990 PCM GFDL PCM GFDL PCM GFDL Change in 
April 
snowpack 
SWE 

U
ni

ts
 PCM B1 A2 B1 A2 B1 A2 B1 A2 B1 A2 B1 A2 

1000–2000 m 
elevation 

% 4.0 km3 -.13 -.35 -.2 -.48 -.26 -.52 -.68 -.61 -.60 -.76 -.75 -.93 

2000–3000 m 
elevation 

% 6.5  km3 +.12 -.09 -.04 -.33 -.08 -.21 -.36 -.32 -.25 -.34 -.56 -.79 

3000–4000 m 
elevation 

% 2.49  km3 +.19 +.01 +.04 -.13 -.02 -.05 -.16 -.11 -.05 -.02 -..41 -.55 

All 
elevations 

% 13.0  km3 +.06 -.15 -.07 -.29 -.12 -.27 -.42 -.37 -.32 -.41 -.59 -.79 
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Figure 17.  California Statewide April 1 Snow Water Equivalent Averages from 
Historical,  2005-2034,  2035-2064, 2070-2099 GFDL A2, PCM A2, GFDL B1 and 

PCM B1 simulations  
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Figure 18.  California Statewide April 1 Snow Water Equivalent GFDL A2, PCM A2, 
GFDL B1 and PCM B1 simulations  
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Figure 19.  Change in spring snow accumulation  from VIC, as driven by climate 
changes from four different climate change simulations.  Changes are expressed 

as. ratio of 2070-2099 April 1 snow water equivalent (SWE) to that of  historical 
(1961-1990). 

April 1 Snow Water Equivalent 

2070-2090 fraction of 1961-1990 
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7.0 Summary 
Possible future climate changes in California are investigated from a varied set of 
climate change model simulations. Projections of future climate changes in California 
are fundamentally guided by the simulations from global climate models. Although 
regional models are needed to distribute climate over the complex landscape of 
California, the primary features of climate change—how much warmer, wetter, or 
drier—is  governed by the large-scale global simulations. The paper focuses on 
temperature and precipitation and some of the processes involved with them, because 
these variables are so strongly involved in climate change impacts over the state.  

These simulations, conducted by three state-of-the-art global climate models, provide 
trajectories from three GHG emission scenarios. These scenarios and the resulting 
climate simulations are not “predictions,” but rather are a limited sample from among 
the many plausible pathways that may affect California’s climate. Future GHG 
concentrations are uncertain because they depend on future social, political, and 
technological pathways, and thus the IPCC has produced four “families” of emission 
scenarios (IPCC 2001).  To explore some of these uncertainties, emissions scenarios A2 (a 
medium-high emissions) and B1 (low emissions) were selected from the current IPCC 
Fourth climate assessment, which provides several recent model simulations driven by 
A2 and B1 emissions. The global climate model simulations addressed here were from 
PCM1 (the Parallel Climate Model from the NCAR and DOE group), and CM2.1 from 
the NOAA Geophysical Fluids Dynamics Laboratory (GFDL). 

In the present study, temperatures are projected to rise significantly over the twenty-first 
century.  The magnitude of projected warming varies between models and the emission 
scenarios. The temperature rises (2000 to 2100) are from approximately 1.7°C–3.0°C  
(3.0°F–5.4°F) in the lower range of projected warming, 3.1°C–4.3°C (5.5°F–7.8°F) in the 
medium range, and 4.4°C–5.8°C (8.0°F–10.4°F) in the higher range. Warming affects both 
wet and dry days with about the same degree.   

To gage the magnitude of these projected 2000–2100 temperature changes, the lower 
range of projected temperature rise is slightly larger than the difference in annual mean 
temperature between Monterey and Salinas, and the upper range of project warming is 
greater than the temperature difference between San Francisco and San Jose, 
respectively. Another noteworthy feature in the temperature projections is that, 
especially in the medium and high GHG emission scenarios, the warming through the 
twenty-first century does not level off, implying that California’s climate would 
continue to warm in subsequent decades of the twenty-second century. Another way to 
think about these warming trends is in terms of the marked shifts they produce in the 
lower, middle, and upper thirds of their historical distribution. By the 2070–2099 period, 
for any of the model runs, the temperature increases are sufficient to nearly eliminate 
values of seasonal mean temperature falling into the lower third, and sharply reduces 
those occurring in the middle third of its recent historical distribution. Such climate 
changes would become, in the words of Hansen et al. 2005 "i.e., climate changes outside 
of the range of local experience." 
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There is no clear trend in precipitation projections for California over the next century.  
However the consensus of the recent IPCC model projections, including several models 
that were not selected for the present study, is for relatively little change in total 
precipitation, with a tendency toward a slightly greater winter and lower spring 
precipitation.  Importantly, when we expand the set of models that are being considered 
to 13 models from the recent IPCC Fourth Climate Change Assessment, there is still not 
a strong consensus, but several show a tendency for drier conditions in California in the 
twenty-first century.  

Downscaling, in this case using a statistical method, provides regionalized temperature 
and precipitation from the global change scenarios, and using a hydrologic model the 
effects on the state’s hydrology was determined. Climate warming in California will 
diminish snow accumulations, because there is more rain and less snow, and earlier 
snowmelt.  Snow losses, perhaps the early signs of climate change, are being noticed in 
the western United States, and hydrologic model simulations indicate that the losses will 
increase as the warming increases. Thus, the most severe losses are produced by the 
more sensitive model with the higher GHG emissions. Considering  A2 and B1 emission 
scenarios and both PCM and GFDL models, losses in snow water equivalent (SWE) in 
the San Joaquin, Sacramento and Trinity drainages, as percentages of (1961–1990) 
historical averages, range  from -32% to -79% (for the 2070–2099 period).  By 2070–2099, 
virtually no snow is left below 1000 m (3280 feet) under this higher emissions scenario 
higher sensitivity model.  Because the higher elevations, and thus the cooler parts of the 
Sierra Nevada, are skewed to the southern portion of the range, the heaviest reductions 
in snow accumulation will occur in the central and northern portions of the mountain 
range.  
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