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PREFACE

The California Energy Commission’s Public Interest Energy Research (PIER) Program supports
public interest energy research and development that will help improve the quality of life in
California by bringing environmentally safe, affordable, and reliable energy services and
products to the marketplace.

The PIER Program conducts public interest research, development, and demonstration (RD&D)
projects to benefit California. The PIER Program strives to conduct the most promising public
interest energy research by partnering with RD&D entities, including individuals, businesses,
utilities, and public or private research institutions.

PIER funding efforts are focused on the following RD&D program areas:
e Buildings End-Use Energy Efficiency
e Energy Innovations Small Grants
e Energy-Related Environmental Research
e Energy Systems Integration
e Environmentally Preferred Advanced Generation
e Industrial/Agricultural/Water End-Use Energy Efficiency
e Renewable Energy Technologies
e Transportation

In 2003, the California Energy Commission’s PIER Program established the California Climate
Change Center to document climate change research relevant to the states. This center is a
virtual organization with core research activities at Scripps Institution of Oceanography and the
University of California, Berkeley, complemented by efforts at other research institutions.

For more information on the PIER Program, please visit the Energy Commission’s
website http://www.energy.ca.gov/research/index.html or contract the Energy Commission at
(916) 327-1551.
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ABSTRACT

While only about 30 percent of California’s usable water storage capacity lies at higher
elevations, high-elevation hydropower units generate, on average, 74 percent of California’s in-
state hydroelectricity. In general, high-elevation plants have small man-made reservoirs and
rely mainly on snowpack. Their low built-in storage capacity is a concern with regard to climate
warming. Snowmelt is expected to shift to earlier in the year, and the system may not be able to
store sufficient water for release in high-demand periods. Previous studies have explored the
climate warming effects on California’s high-elevation hydropower system by focusing on the
supply side (exploring the effects of hydrological changes on generation and revenues) but they
have ignored the warming effects on hydropower demand and pricing. This study extends the
previous work by simultaneous consideration of climate change effects on high-elevation
hydropower supply and demand in California. Artificial Neural Network models were
developed as long-term price estimation tools, to investigate the impact of climate warming on
energy prices. California’s Energy-Based Hydropower Optimization Model (EBHOM) was then
applied, to estimate the adaptability of California’s high-elevation hydropower system to
climate warming, considering the warming effects on hydropower supply and demand. The
model was run for dry and wet warming scenarios, representing a range of hydrological
changes under climate change. The model’s results relative to energy generation, energy spills,
reservoir energy storage, and average shadow prices of energy generation and storage capacity
expansion are examined and discussed. The modeling results are compared with previous
studies to emphasize the need to consider climate change effects on hydroelectricity demand
and pricing when exploring the effects of climate change on California’s hydropower system.

Keywords: Hydropower, climate change, electricity, energy, generation, supply, demand, price,
Artificial Neural Network, California, high-elevation, EBHOM, optimization
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Guegan M., K. Madani, and C. B. Uvo. 2012.Climate Change Effects on the High-Elevation
Hydropower System with Consideration of Warming Impacts on Electricity Demand
and Pricing. California Energy Commission. Publication number: CEC-500-2012-020.
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Section 1: Introduction

Hydropower facilities in California generated on average 37,000 gigawatt-hours (GWh), or

15 percent, of the annual in-state electricity generation between 1983 and 2001; ranging annually
between 9 percent and 30 percent, depending on hydrological conditions (McKinney et al.
2003). When precipitation runoff is plentiful, hydroelectric generation is prioritized, while other
power plants, mostly gas-fired facilities, may be shut down temporarily (McKinney et al. 2003).
Hydroelectricity’s very low cost, near-zero emissions, and load-following capacity are some of
the reasons for its great popularity (McKinney et al. 2003; Pew Center on Global Climate
Change 2009). The State of California has the second largest hydropower system in the United
States, behind the state of Washington, with a total hydroelectric capacity over 14,000
megawatts (MW), representing 25 percent of California’s electricity generation capacity
(McKinney et al. 2003). California also relies on hydroelectricity imports from the Pacific
Northwest, including Canada and the states of Oregon and Washington (Aspen Environmental
Group and M. Cubed 2005).

California’s statewide average temperatures are expected to rise between 3°F and 10.5°F (1.7°C
and 5.8°C) by 2100 (CCCC 2006; Cayan et al. 2008 and 2009). This temperature increase is
expected to decrease the state’s snowpack reserve at high elevations and shift the runoff from
snowmelt to an earlier period of the year than today (CCCC 2006). Variations in the annual
runoff pattern may significantly alter hydropower generation, depending on the system’s
storage and generation capacities. California’s state is currently encouraging active research on
the adaptability of hydropower systems to climate change (e.g., Aspen Environmental Group
and M. Cubed 2005; Tanaka et al. 2006; Madani and Lund 2007; Medellin-Azuara et al. 2008;
Madani et al. 2008; Vicuia et al. 2008; Madani 2009; Duffy et al. 2009; Madani and Lund 2010;
Madani 2011; Connell-Buck et al. 2011; Vicufia et al. 2011). Besides affecting the availability of
water for electricity generation, higher temperatures will likely increase demand for cooling in
warm periods (CCCC 2006; Franco and Sanstad 2006; Aroonruengsawat and Auffhammer
2009).

Rising energy demand, coupled with reduced hydroelectricity generation, could lead to a
substantial impact on the electricity market. A rise in hydroelectricity prices is foreseeable, and
electricity distributors will probably also have to shift to more-expensive, less-environmentally
friendly energy sources to replace the lost hydropower generation (Union of Concerned
Scientists 2006). To the best of the authors” knowledge, no study has addressed the impact of
climate change on electricity prices in California by considering simultaneously changes in
supply and demand of hydroelectricity.

California’s Electricity Supply Industry (ESI) is a deregulated competitive market supervised by
the state. It relies on long-term contracts regulated by the State to avoid market manipulations
like those that happened during the California crisis of 2000-2001 (CBO 2001). The California
Power Exchange (CalPX) operates the day-ahead market and sets the price that the generators
will use to sell electricity, based on a bidding process. The California Independent System



Operator (CalISO) operates the region’s power grid and wholesale electric markets, and deals
with real-time imbalances of energy, ancillary services, and transmission usage.

The specificity of the electricity market compared to other commodities is that it requires a well-
coordinated balance between generation and consumption, since storage of electricity remains
limited and expensive (Amjady and Hemmati 2006). Therefore, accurate short-term price
forecasting is crucial information for producers and retailers to develop their bidding strategy
in a day-ahead electricity market; and has prompted many research works (e.g., Zhao et al.
2007; Zarezadeh et al. 2008; Amjady and Keynia 2010a). However, this is not an easy task, as
price of electricity is a nonlinear, time-variant, and volatile signal owning multiple periodicity,
high-frequency components, and significant outliers, i.e., unusual prices (especially in periods
of high demand) due to unexpected events in the electricity markets (Amjady and Hemmati
2006). The application of Artificial Neural Network (ANN) models has provided a good ability
to forecast normal electricity prices (Zhao et al. 2007). ANNSs provide an appealing solution for
relating nonlinear input and output variables in complex systems (ASCE 2000; Dawson and
Wilby 2001).

The present research addresses the impacts of climate warming on California’s high-elevation
hydropower system, considering simultaneously the impact of climate change on the supply,
demand, and pricing sides. The main contribution of this work is the development of a long-
term price estimation model using Artificial Neural Networks. The novel long-term price
estimation ANN model developed by Guégan et al. (2012) is used to estimate climate warming
impacts on electricity prices. In this model price representation is based on the estimation of a
relationship between temperature, electricity demand, time of year, and electricity price. The
obtained results were finally fed into the model of Madani and Lund (2009) for hydropower
operation optimization based on profit maximization to estimate statewide high-elevation
hydropower system adaptability to climate change.

The paper is organized as follows: Section 2 describes California’s hydropower system;
Section 3 describes historical electricity demand and pricing trends in California; Section 4 is a
literature review of climate change effects on hydropower supply and demand; Section 5
defines the research methodology;Section6presents the results from the hydropower
optimization model simulations under climate warming scenarios; Section7discusses the
limitations of the study and future direction; and Section8concludes the discussion. Details
about the ANN models developed and the estimated effects of climate warming scenarios on
electricity prices are provided in Appendix A.



Section 2: California and Hydropower

Climate across the California region can be very different, due to the great differences in
altitude and in latitude of the state. According to Kauffman (2003), five major climate types can
be observed in close proximity in California; namely Desert, Cool Interior, Highland, Steppe,
and Mediterranean. As the objective of this research is to study the impacts of statewide climate
change on California’s high-elevation hydropower system, only major trends of temperature
and precipitation distribution will be presented. Much of California has warm, dry summers
and cool, wet winters (Zhu et al. 2005). In terms of electricity demands this corresponds to high
demands in summer for air cooling (Figure 1) and in winter for heating; whereas, the lowest
demands occur in spring and autumn, when neither great heating nor cooling is required.
Precipitation is very uneven throughout the year, with around 75 percent of the annual

584 millimeters (mm) occurring between November and March (Zhu et al. 2005) and falling as
snow in the Sierra Nevada mountain range (Moser et al. 2009). This situation results in spatially
uneven runoff, with more than 70 percent of California’s average annual runoff occurring in
northern California (Madani and Lund 2009).
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Figure 1: Electricity Supply and Demand Profile for a Typical Hot Summer Day

California’s hydroelectric system generated 15 percent, on average, of the annual in-state
generation between 1983 and 2001 (McKinney et al. 2003). In-state hydropower is generated by
four types of hydropower systems: high-head, low-storage hydropower plants; low-head
multipurpose dams; pumped-storage plants; and run-of-the-river units (Pew Center on Global
Climate Change 2009). Figure2 shows the distribution of California’s hydropower system.

While only about 30 percent of the state’s usable water storage capacity is at higher elevations,
high-elevation hydropower units generate, on average, 74 percent of California’s in-state
hydroelectricity (Madani and Lund 2009). Madani and Lund (2009) have identified 156 high-
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elevation hydropower plants above 1,000 feet (305 meters). Most are located in Northern
California (Aspen Environmental Group and M. Cubed 2005). Hydroelectric generation is
generally their only purpose, and only small amounts of water are necessary to produce
substantial quantities of electricity with vertical drops of water of hundreds of feet (Pew Center
on Global Climate Change 2009). They have been designed to take advantage of the snowpack
acting as a natural reservoir and their human-made reservoir is usually small. Their limited
storage capacity may make them sensitive to future snowpack volume and runoff timing
variations (Madani and Lund 2010).
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Figure 2: Hydroelectric Power Plant Distribution in California (Capacity > 1 MW)
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Section 3: Electricity Demand and Pricing in California

The disparities between the trends in electricity demand in California and the United States
have been of great interest to the scientific community (e.g., Kandel et al. 2008; Horowitz 2007;
Rosenfeld 2006). California’s aggregate electricity consumption per capita (ECP) remained
almost flat since 1976, while it increased by around 50 percent nationwide, as shown in Figure 3.
On a sector-by-sector basis, the main difference comes from the industrial and residential
sectors. Between 1973 and 2005, California’s residential per capita electricity consumption
increased slowly (by 14 percent) compared to that in the United States overall, where it
increased by 60 percent (Kandel et al. 2008). California’s slow increase in residential ECP is
related to many factors, including: its mild climate compared to other states, resulting in less
heating and less cooling demand in winter and summer respectively (Kandel et al. 2008); the
high concentration of urban areas with many multi-family units (Kandel et al. 2008); the higher-
than-U.S. average energy prices (see Figure 5), encouraging consumers to save energy (Kandel
et al. 2008); and probably the aggressive energy-efficiency programs launched around 1976
(Horowitz 2007). Between 1973 and 2005, California’s industrial sector reduced its ECP by

39 percent, partly because there has been a structural change in California’s economic structure
since the late 1990s that has bartered energy-intensive manufacturing for less-energy intensive
services (Tanton 2008).
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Figure 3: California and U.S. Per Capita Electricity Use by Sector, 1960-2008

Meanwhile, California’s ECP has remained roughly flat. Its aggregate electricity consumption
has increased by 65 percent between 1980 and 2008, as have its imports of electricity; with, for
example, a 60 percent increase in coal-based electricity imports from 1983 to 2005 (Tanton 2008).



The electricity peak demand in California has also been increasing, as illustrated in Figure 4, but
slowed after the initialization of energy-efficiency programs in 1976 (Rosenfeld 2006). California
electricity peak demand reached 55 gigawatts (GW) in 2004.

Average nominal U.S. retail electricity prices have increased significantly since the 1970s, as
shown in Figure 5, as a result of the 1970s fuel crisis (Bloom Energy 2010). On average, prices in
California are higher than in the rest of the nation. The second energy crisis experienced by
California in 2001 led to a retail price jump of30 percent between 1999 and 2002, and prices have
not decreased significantly since then (Figure 5). In 2006, California had the second-highest
retail sales in the United States, according to Kandel et al. (2008). A linear regression of the
average retail prices for the period 1960-2005 corresponds to an annual growth rate of around
0.25cents/kilowatt-hour (KWh). If a similar linear increase is considered up to the end of the
twenty-first century, this would lead to an increase of 25 cents/KWh by 2100, or an increase of
more than 100 percent compared to 2005.
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Figure 4: California Peak Electricity Demand, 1965-2004
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Section 4: California and Climate Change

Climate Change Scenarios for California

The scientific community agrees that the mean global temperature is expected to increase
worldwide; whereas, the future hyetograph pattern is still uncertain (CCCC 2006; Cayan et al.
2008 and 2009). Cayan et al. (2008 and 2009) focused their study on changes in climate at the
surface, mostly related to temperature and precipitation, and addressed plausible pathways for
the California region. The climate change scenarios are produced by combining Global Climate
Models (GCMs) to greenhouse gas (GHG) emission scenarios, as defined in the
Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment released in 2007. Three
probable sets of projections of GHG emissions for California are the B1 (low emissions), A2
(medium-high emissions), and Alfi (high emissions) storylines (Figure 6) (Cayan et al. 2008 and
2009).
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Figure 6: Historical and Projected CO,Emissions: Scenarios B1, A2, and A1fi

The magnitude of projected temperature rise over the twenty-first century varies between the
model sensitivity and the emission scenarios, as illustrated in Figure 7. By 2100, temperature
increases are estimated to range between 1.5°C and 4.5°C (2.8°F-8.0°F) under the lower-
emission scenario B1 in the less-responsive GCM PCM (Parallel Climate Model)and under the
higher-emission scenario A2 in the GFDL (Geophysical Fluid Dynamics Laboratory model),
respectively (Cayan et al. 2009). Generally, warming is expected to be greater in summer than
the rest of the year in all scenarios except the PCM B1 scenario (Cayan et al. 2008). Warming
should affect both wet and dry days at about the same degree (Cayan et al. 2006). In their
works, Cayan et al. (2008 and 2009) present different plausible temperature increases for both
the Northern California region (NOCAL) and Southern California region (SOCAL).

Climate warming is likely to affect hydropower’s supply/generation, demand, and pricing
simultaneously. To the best knowledge of the authors, these issues have always been addressed
independently. The following sections review recent research conducted in California on



climate warming impacts on hydropower supply (e.g., Vicuna et al. 2008 and 2011; Madani and
Lund 2010) and demand (e.g., Franco and Sanstad 2006; Aroonruengsawat and Auffhammer

2009).

Previous works assessing climate change impacts in California have commonly used a range of
plausible scenarios from an earlier work of Cayan et al. (2006) or directly based on the former
IPCC Third Assessment (e.g., Medellin-Azuara et al. 2008; Vicufia et al. 2008; Aroonruengsawat
and Auffhammer 2009; Madani and Lund 2010).
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Figure 7: Warming Ranges for Three Plausible GCMs Coupled with Three GHGs for California

Impacts on Hydropower Supply

Climate change will affect hydrological conditions. California’s twenty-first century hydrology
is expected to be altered in the following manner: part of the winter precipitation falling as
snow will turn to rain; higher temperatures will lead to a shift in timing of the snowmelt peak
flow; peak flow’s intensity will be reduced; and winter runoff is increased (Moser et al. 2009).

Hydrological changes create a big concern for California’s hydropower system, which may face
water shortages in summer when the demand is the highest (Moser et al. 2009; Madani and
Lund 2010). This issue should be less problematic for low-elevation multipurpose hydropower
systems (less than 1,000 feet) benefitting from large human-made reservoirs, than it is for high-
elevation units with small human-made reservoirs (Tanaka et al. 2006; Medellin-Azuara et al.
2008; Connell-Buck et al. 2011). Relying mainly on natural snowpack reserves, high-elevation
hydropower systems have a limited flexibility in operation. If their storage capacity cannot
accommodate hydrological changes, these high-elevation hydropower systems may be
vulnerable to climate change (Madani and Lund 2010).

According to Madani and Lund (2010), most studies assessing the impacts of climate change on
hydropower generation in California have focused on large-scale, low-elevation systems (e.g.,
Tanaka et al. 2006 and Medellin-Azuara et al. 2008) or on a few individual high-elevation



hydropower units (e.g., Vicufia et al. 2008 and 2011; Madani et al. 2008). High-elevation systems
are nonetheless generating 74 percent of California’s in-state hydroelectricity on average
(Madani and Lund 2009), which has prompted recent research on the impacts of climate change
on high-elevation hydropower systems (e.g., Vicufia et al. 2008 and Madani and Lund 2010).

Vicuiia et al. (2008) studied the impact of four climate change scenarios on high-elevation
hydropower system in the Upper American River, using a linear programming model that
maximizes the system’s revenue, subject to operational and physical constraints. The model ran
under the historical scenario and replicated expected patterns of operation, with reservoir
refilling in spring and electricity generated in priority when it is the most valuable. For the two
drier scenarios, both power generation and energy revenue decreased, but generation decreased
more than revenue, showing the system’s ability to store water when prices are low for a later
release when energy is more valuable (July-September). For the wetter scenarios, the increase in
generation outpaced the increase in revenue, and the generation pattern was similar to the
hydrograph. For all scenarios, the occurrence of spillage increased, caused by the inconvenient
hydrograph.

The energy price representation considered by Vicufa et al. (2008) distinguished two constant
on-peak and off-peak monthly prices; capturing some effects of non-constant energy prices. If
fixed monthly prices were used, a model based on revenue maximization would suggest that
there would be no generation in months with low energy prices, to allow maximum generation
in months where energy is valuable (Madani and Lund 2007). Madani and Lund (2009)
formulated a new approach, where the price representation was derived from the distribution
of hourly real-time prices for each month. This allowed for capturing the hourly variability in
energy prices—on a monthly basis—of the overall energy market that is responding mostly to
on-peak and off-peak variability in energy demands. The energy price used was a function of
the percent of the time that turbines are in operation, assuming that they operate in hours when
the energy market offers higher prices (Madani and Lund 2009)!.

Madani and Lund (2009) also introduced a novel approach to model the operations of a large
number of high-elevation hydropower systems, using the Energy-Based Hydropower
Optimization Model (EBHOM). EBHOM is the only one of its kind, allowing the modeling of an
entire region’s high-elevation hydropower system in a relatively straightforward manner,
without the need to develop traditional stream flow and reservoir volume-based models for

1 The suggested method develops monthly revenue curves to capture the considerable effects of on-peak
and off-peak pricing on the revenues. Since in real electricity markets, prices fluctuate on an hourly basis
and marginal revenues of generation decrease with increased hours of generation, fixed pricing methods
fail to reflect the reality of the market. While capturing the fluctuating nature of the pricing in the
hydropower market is possible through developing an hourly-based hydropower operations model,
calculation effort for running such models can be burdensome. The suggested monthly revenue curves
are developed based on the frequency distribution of hourly hydropower prices in the market. The
revenue curves approximately represent hourly pricing within a monthly model, reducing the calculation
effort. More details about the suggested method can be found in Madani and Lund (2009).
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each plant in the system. To evaluate the reliability of EBHOM, this model was tested against
the traditional hydropower optimization model developed by Vicufia et al. (2008) on the Upper
American River system in a collaborative study by Madani et al. (2008). Both models predicted
the same changes in generation and revenue with respect to the historical case2. Even if the
EBHOM is very simplified compared to traditional optimization models, it produces reasonable
results and is a step forward toward modeling global trends, including “the effects of climate
change and energy prices on system-wide generation and hydropower revenues” (Madani and
Lund 2010).

Madani and Lund (2010) applied EBHOM to estimate the impacts of climate warming on
California’s high-elevation hydropower system for the three following scenarios: warming-
only, dry warming (GFDL-A2)3, and wet warming (PCM-A2). Warming-only and dry warming
scenarios show both reduced generation and revenue, while the wetter scenario has the
opposite effect. Current storage and generation capacities are able to cope with some of the
supply loss of the dry warming scenario. Compared with the base historical scenario, the

20 percent runoff decrease led to revenue losses of only 14 percent. Conversely, the 10 percent
increase of annual runoff compared to the Base case led to an increase of only 6 percent in
generation and 2 percent in revenues for the Wet case scenario. Spills increased for all scenarios
except the Dry one.

The above-mentioned studies only considered that climate warming will change hydrologic
conditions and alter hydropower water supply. Therefore, potential changes in electricity
demand and prices, resulting from various climatic, economic, technologic, policy or market
reasons (Madani and Lund 2010),were not accounted for.

Impacts on Hydropower Demand

On the demand side, climate warming is expected to increase the need for cooling in summer
and reduce the need for heating in winter (CCCC 2006).

Franco and Sanstad (2006) examined the statewide correlation between daily average quantities
(mean daily temperatures and base loads) and extreme quantities (maximum daily
temperatures and peak loads). They determined a nonlinear convex relationship between
average daily temperature and demand, and a linear relationship between summer peak load
and maximum temperatures. Then they developed climate change scenarios for the twenty-first
century and examined demand responsiveness (considering the relationships between demand
and temperature invariant in the future). Relative to the base period 1961-1990, electricity
demand increased in the range of 3.1-20.3 percent, and peak load increased in the range of

2 Further details on validation of the EBHOM can be found in Madani et al. (2008) and Madani and Lund
(2009).

3 The dry warming scenario used in Madani and Lund (2010) may be considered as the worst case
scenario as it is only one realization of multiple climate warming scenarios available for California.
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4.1-19.3 percent by 2100. It is noteworthy that even a small increase in demand would result in
a high increase in energy expenditures (Franco and Sanstad 2006).

Miller et al. (2008) estimated a potential for electricity deficits as high as 17 percent during peak
electricity demand periods. To estimate the deficits, they mapped the projected extreme heat
under climate warming and observed relationships between high temperature and electricity
demand for California onto current availability, maintaining technology and population
constant for demand-side calculations. They concluded that future increases in peak electricity
demand can result in challenges to the current transmission and supply systems, especially
when population and income growth are taken into account.

Aroonruengsawat and Auffhammer (2009) used a unique panel of household electricity billing
data from California’s three largest investor-owned utilities. They did not estimate demand as a
function of statewide temperature, but divided California in 16 climate zones. They projected an
increase in aggregate demand ranging from 18 percent to 55 percent by 2100 for a constant
population. This represents an average annual growth rate of aggregate electricity demand
ranging between 0.17 percent and 0.44 percent. In reality, these growth rates accelerate with
time.

Aroonruengsawat and Auffhammer (2009) also coupled climate warming to economical future
scenarios. They developed two scenarios that considered electricity price increases based on the
projected impacts of AB 32 compliance combined with natural gas price increases: a discrete

30 percent increase by 2020 remaining to the same level until the end of the century, and two
successive increases of 30 percent by 2020 and 20 percent by 2040. By 2100, the total change in
demand ranged between +4 percent and +39 percent for the low price increase scenario and
between -7 percent and +24 percent for the high price increase scenario. Higher prices result in a
decreased demand compared to the Base case, where no price increase was considered.

Aroonruengsawat and Auffhammer (2009) also considered population increase scenarios.
Combined to a low forcing climate warming scenario, a low projection of 0.18 percent
population growth rate per year (equivalent to a population increase of 18 percent by 2100)
predicts an increase of 65 to 70 percent in residential electricity demand by 2100. This increase is
much higher than the 20 percent increase predicted for the climate warming-only scenario. The
worst case they predicted coupled a high forcing scenario with a high growth rate

(+1.47 percent per year) and suggested an increase in demand up to 478 percent. Demographic
trends have substantial impacts on future energy demands and nearly outweigh the impact of
climate change.

Many additional parameters are plausible drivers for future electricity demand changes:
demographic trends (size and distribution of the state’s population); economic growth
(Aroonruengsawat and Auffhammer 2009); changes in the energy market (demand and pricing
of resources such as gas, nuclear, or photovoltaic) (Franco and Sanstad 2006); new stringent
environmental policies; human’s adaptation to warmer conditions; energy use efficiency
improvements; and others.
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Section 5: Method

This section briefly describes the overall method used in this work, based on the flowchart in
Figure 8. The following sections provide further details on the models selected and the choices
and assumptions made.

The research team developed an artificial neural network (ANN) model to map the relationship
between a set of inputs and the hourly electricity prices. Details about the developed ANN
model have been provided in Appendix A and Guégan et al., (2012). The inputs to the ANN
model include temperature, demand, and deterministic components (e.g., season, day of the
week, hour). An ANN model was chosen because it is a powerful machine learning tool that
provides an appealing solution for relating input and output variables in complex systems
(Dawson and Wilby 2001). ANNSs are capable of extracting information from systems even with
little prior physical knowledge about the systems (Zhang et al. 1998). The ANN architecture
chosen was a multilayer feedforward model using the Shuffle Complex Evolution (SCE-UA)
global-search optimization method developed by Duan et al. (1992).

The ANN performance is reliant on the quantity and quality of the calibration data (Kingston et
al. 2005). As described in Appendix A and Guégan et al., (2012) before calibration of the model,
the researchers performed a preliminary statistical analysis of the collected data, to get an
overview of existing trends and potential problems, and to allow for adequate data pre-
processing. Once the ANN was trained, simulations with perturbed input data were run to
account for the chosen climate warming scenarios. Scenarios were chosen from the work of
Cayan et al. (2009) based on the IPCC Fourth Assessment. The outputs of the trained ANN are
predicted hourly prices. The price representation chosen for the next modeling steps were based
on the work of Madani and Lund (2009) capturing the hourly variability of energy prices.

The research team estimated the climate warming effect on California’s high-elevation
hydropower system using the Energy-Based Hydropower Optimization Model (EBHOM)
developed by Madani and Lund (2009). Price frequency and revenue curves (integration over
the price frequency curves) were drawn and used as inputs to EBHOM, together with historic
monthly generation data and seasonal runoff distributions. The EBHOM results are monthly
optimized generation, revenue and end-of-month storage data for the statewide high-elevation
hydropower system, considering climate change effects on demand, supply, and pricing.

Previous findings from Madani and Lund (2010), assessing only the supply-side impacts of
climate change, were compared to the results from this research.

Appendix A includes a description of existing ANN models, followed by data collection and
analysis, ANN model selection, set up, and calibration. It includes the application of the trained
ANN model to estimate future price scenarios. Section6 presents EBHOM and its results.
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Section 6: Energy-Based Hydropower Optimization
Model (EBHOM)

Model Set Up

This study investigates the effects of climate change on California’s high-elevation hydropower
plants using the Energy-Based Hydropower Optimization Model (EBHOM) developed by
Madani and Lund (2009). EBHOM is a monthly step model which performs all storage, release,
and flow calculations in energy units (Madani and Lund 2009). It provides a big picture of the
system and is an interesting alternative to conventional volume-based optimization models that
usually require detailed information such as streamflows, turbine capacities, storage operating
capacities, and energy storage capacities at each individual plant of the system.

Figure 9 is a flowchart of the EBHOM modeling procedure. The input data required to run
EBHOM are: runoff data, available storage capacity at each power plant, and frequency of
hourly electricity prices for each month of the year. See Madani and Lund (2009) for details on
EBHOM’s mathematical formulation.

Runoff data representative of three elevation ranges (1000-2000, 2000-3000 and >3000 feet) were
gathered previously from several U.S. Geological Survey (USGS) gauges as described in Madani
and Lund (2009). Three elevation bands were chosen to take into account the different value of
the snowpack and precipitation in each band. Monthly runoff distributions in each range were
then perturbed using monthly runoff perturbation ratios of the adopted climate change
scenarios, as described by Vicufia et al. (2008). A perturbation ratio is “a simple ratio of average
runoff predicted by a GCM for different eras for a given time period(e.g., Q2070-99/Q1960-90, where
Q is average July streamflow)” (Vicuna et al. 2008).
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Figure 9: Flowchart of EBHOM Modeling Procedure
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The available energy storage capacity at each power plant is determined using the No Spill
Method (NSM) developed by Madani and Lund (2009), which is applicable when: plants are
operated for net revenue maximization, storage volumes do not significantly affect the head,
and there is no over-year storage. These conditions are filled by California’s high-elevation
hydropower system (Madani and Lund 2009).

The price representation used to run is either historical prices or forecasted prices from the
earlier ANNs developed, depending on the climate scenarios. Revenue curves were drawn by
integration over the price frequency curves for each month and were then piecewise linearized
into five segments to solve EBHOM through linear programming (Madani and Lund 2009).

Climate Warming and Price Increase Scenarios

Table 1 summarizes the scenarios selected to run EBHOM. A dry warming (GFDL-A2)4, and a
wet warming (PCM-A2) scenario were chosen to be consistent with the previous research of
Madani and Lund (2010). Also chosen was an additional seasonal dry warming scenario
considering high temperature increases in summer and low temperature increases in winter.
For each climate scenario, EBHOM was run under historical price or price forecasts from either
the monthly based ANN model (ANN1) or the annually based ANN model (ANN2). Running
EBHOM based on price forecasts considers the changes in energy demand due to climate
warming.

Two price increase scenarios (+30 percent or +100 percent by 2100) were defined. Inspired by the
work from Aroonruengsawat and Auffhammer (2009), the first scenario assumes a discrete
price increase of 30 percent by 2020 and remaining at that level until the end of the century. The
second scenario is based on the historical trend of average retail prices in California described in
Section 3. A constant annual growth rate of 0.25 cents/KWh (calculated for the period 1960-
2005, see Figure 5) results in retail prices increase by 100 percent by 2100. Each price increase
scenario is then coupled to each climate warming scenario, run under historical prices and the
two ANN price models.

4 This scenario was mainly selected for comparison of the results with results obtained by Madani and
Lund (2010). Nevertheless, this scenario is only one realization of multiple climate warming scenarios
available for California, and can be considered as the worst case scenario here.
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Table 1: Scenarios Defined to Run EBHOM, Including Four Climate Scenarios and Three Price
Models. Additional Scenarios Were Designed by Coupling Two Pure Price Increase Scenarios
(+30 Percent and +100 Percent) to the Scenarios in this table.

Scenario Acronym CC Scenario Price Model Price Increase
Base Base Case None: Historical

Dry GFDL-A2-Annual prices

Wet PCM-A2-Annual

Base ANN1 Base Case

Dry ANN1 GFDL-A2-Annual ANNI:

Dry-Seas ANN1 GFDL-A2-Seasonal Monthly ANNs 0%
Wet ANN1 PCM-A2-Annual

Base ANN2 Base Case ANN2:

Dry ANN2 GFDL-A2-Annual

Dry-Seas ANN2 GFDL-A2-Seasonal Annual ANN for

Wet ANN2 PCM-A2-Annual Normal Prices

Results

Historical Prices and Climate Change Impact on Hydrology Only

EBHOM’s results for 1985-1998 hydrologic conditions and 2005-2008 historical price dataset are
presented here. Table 2 indicates how energy generation, energy spill5, and annual energy
revenue all change with the Dry, Wet, and Base case climate scenarios. In this section, results
are discussed and compared to those obtained by Madani and Lund (2010), who did the same
study but with a different price dataset. Hourly electricity prices from 2005-2008 are also used
here but prices from the period September—December 2005 were removed from the set, as
explained earlier. Other differences with the work of Madani and Lund (2010) are: a different
piecewise linearization of the revenue curves was considered, and the solver may not always
come up with the globally optimal solution, because the problem is relatively complex.

Energy generation, energy spills, and revenues increase under the Wet scenario but decrease
under the Dry scenario relative to the Base case. Energy spills increase drastically under the Wet
scenario, with eight times more spills than under Base case. Energy spills occur due to the
limited storage capacity of the system and the abundant runoff available. These results are
similar to those from Madani and Lund (2010). Even if average generation increases by nearly

6 percent under the Wet scenario relative to Base case, average revenues only increase by

2 percent. Under the Dry scenario, average generation decreases by 20 percent but revenues
only decrease by 14 percent relative to Base case. The system adapts to the new climatic
conditions to maximize profits. Revenues estimated in the present work are different from the
ones obtained by Madani and Lund (2010).

5Energy spill represents the amount of potential energy which is lost in the system.
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Table 2: EBHOM's Results (Average of Results over 1985-1998 Period)
for Different Climate Scenarios

Base Dry Wet
Generation (1,000 GWh/year) 22.3 17.9 23.6
Generation change with respect to the base case (%) -19.8 +5.8
Spill (GWh/year) 130 96 1112
Spill change with respect to the base case (%) -26 +756
Revenue (million $/year) 1,726 1,482 1,762
Revenue change with respect to the base case (%) -14.1 +2.1

Generation Changes with Climate Warming

Figure 10 shows average monthly energy generation for 1985 to 1998 hydrologic conditions,
modified for different climate changes. Results are summed from all 137 units modeled. On
average, dry conditions led to less generation than under Base case except in January and
February. The monthly generation peaks occur in January and in June, when demand is high
and energy is valuable. Generation between January and April is highest for the Wet scenario
due to increased runoff. In the rest of the year, average monthly generation is slightly less than
under Base case.
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Figure 10: Average Monthly Generation (1985-1998) under Different Climate Scenarios and
Historical Prices

Figure 11 shows the frequency of optimized monthly generation for each month over the
14-year period (1985-1998) summed for all units, for the different climates. Over the entire
study period, Dry climate leads to less generation than Base case and in contrast, Wet climate
nearly always leads to more generation than found in the Base case. If more storage capacity
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were available, the generation curve under the Wet scenario would be closer to the Base case
curve, with higher revenues.
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Figure 11: Frequency of Monthly Optimized Generation (1985-1998) under Various Climate
Scenarios (All Months, All Years, All Units) and Historical Prices

Reservoir Storage Changes with Climate Warming

Figure 12shows how average end-of-month energy storage in all of the reservoirs combined
changes with climate when reservoirs are operated for energy revenues only. The starting
month for reservoir refilling is January under the Base and Wet scenarios and November under
the Dry climate. Under climate warming scenarios, reservoirs capture most of snowmelt water
between January and May and release it progressively in months of high demand, maximizing
profit. The timing of the patterns is similar to the monthly runoff distributions. The peak
storage intensity is relative to the amount of water available; it is the largest under the Wet
scenario, then the Base case, and finally the lowest under the Dry scenario. The peak intensity is
also lower under Base case than Wet scenario because some of the water is directly released and
not stored for later. For instance, the end-of-month storage capacity in June is about the same
for these two scenarios.
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Figure 12: Average Total End-of-Month Energy Storage (1985-1998) under Different Climate
Scenarios and Historical Prices. The Black Line Is the System’s Storage Capacity.

Energy Spills with Climate Warming

Figure 13 shows the frequency of total monthly energy spills from the system for the study
period (1985-1998) when the system is optimized for revenue maximization. Energy spill is the
equivalent energy value of the water that cannot be stored nor sent through turbines because of
limited capacities. Energy is spilled by the system in 35 percent of months under Wet climate, in
20 percent of months under Base case, and in 10 percent of months under Dry climate. This
study calculated energy spill as the increased energy spill with respect to the Base case, so zero
spills under the Base case was expected. However, the results showed a minimal model error of
130 GWHh, corresponding to 0.6 percent of total generation on average, under the Base case.

Figure 14 shows the distribution of total average monthly energy spill for different climates.
Spills occur only between January and May in all cases. Substantial energy spills (850 GWh in
total) occurred in February under the Wet scenario even though the total storage capacity is not
met. EBHOM has perfect foresight into the future (because it is a deterministic model with fixed
inflow and price distributions) and knows what will happen in the next months, so in this case
it suggests spilling and emptying the reservoirs in advance.
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Figure 13: Frequency of Total Monthly Energy Spill (1985-1998) Under Different Climate Scenarios
(All Months, All Years, All Units) And Historical Prices
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Figure 14: Average Monthly Total Energy Spill (1985-1998) under Different Climate Scenarios and
Historical Prices

Revenue and Energy Price Patterns under Climate Warming

Figure 15 shows climate warming effects on monthly average price received for generated
energy in the period 1985-1998. Prices received under the Dry scenario exceed the Base case
prices 85 percent of the time, but monthly generation is less 100 percent of the time. This is what
was expected given the nonlinear relationship between electricity prices and generation. Prices
received under Wet climate are similar to the ones under the Base case, but never exceed those
prices. Average prices received here reach $175/MWh under the Dry climate, $150/MWh under
the Wet climate, and $135/MWh under the Base case; whereas, those did not exceed $135/MWh,
$120/MWh and $120/MWh, respectively, in Madani and Lund (2010).
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Figure 15: Frequency of Monthly Energy Price (1985-1998) under Different Climate Scenarios (All
Months, All Years, All Units) and Historical Prices

Figure 16 shows the effects of climate warming on the frequency of total annual revenues from
the system for the 14-year period (1985-1998). Annual revenues are the highest 80 percent of the
time under the Wet scenarios and the lowest 100 percent of the time under the Dry scenario.
Although monthly average prices received for generated energy were higher under the Dry
scenario, the increase in average prices received does not compensate for the Dry scenario
reduction in energy generation. On average, annual revenues are $210 million lower than the
Base case for the Dry scenario.
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Figure 16: Frequency of Total Annual Revenue (1985-1998) under
Different Climate Scenarios and Historical Prices
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Benefits of Expanding Energy Storage and Generation Capacity

Figure 17 shows, on average, how energy storage capacity expansion changes hydropower
generation revenues for different climate scenarios over the 14-year study period. This figure
indicates the average shadow price of energy storage capacity (the increase in annual revenue
per 1 MWh energy storage capacity expansion) for all 137 reservoirs. For instance, increase in
annual revenue per IMWh energy storage capacity expansion is less than $29, $48, and $51
(compared to $35, $47, and $54 in Madani and Lund [2010]) for the 137 studied plants under the
Base, Dry and Wet scenarios. Storage capacity expansion reduces spills and allows for more
release in summer, when energy is the most valuable. Average annual revenues can be
increased by expanding storage capacity in all plants (except for four plants under Base case),
although such expansion might not be justified due to expansion costs. As expected, benefits of
capacity expansion are greater for Wet scenario when the additional capacity can be more
frequently used. Even with the historical hydrology, expanding storage capacity increases total
annual revenues in all years.
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Figure 17: Average Shadow Price of Energy Storage Capacity of 137 Hydropower Units in
California for 1985-1998 Period under Different Climate Scenarios and Historical Prices

Figure 18 indicates the average shadow price of energy generation (turbine) capacity (increase
in annual revenue per 1 MWh of annual energy generation capacity expansion) for all

137 plants under different climate scenarios. All scenarios benefit from an increase in generation
capacity, reducing spills and allowing more energy to be generated when prices are high.
Increase in annual revenue per IMWh energy storage capacity expansion is around $22, $18,
and $25 for the 137 studied plants under the Base, Dry, and Wet scenarios, respectively. Even
though generation capacity expansion produces benefits, expansion costs might be prohibitive.

Figure 19indicates how the marginal benefits of energy storage and generation capacity
expansion of power plants vary with climate (each point in the figure is a hydropower plant). It
clarifies the relative importance of extra energy generation and storage capacity for each unit for
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all climate scenarios. Under the Base scenario, half of the power plants benefit more from
energy storage capacity expansion than from generation capacity expansion. However, storage
capacity expansion is more beneficial in terms of revenue if the entire system is considered.
Comparison of with the different diagrams in Figure 19 shows how storage capacity becomes
more valuable under climate warming as the scatter in the figures expands to the right,
highlighting the higher benefit from energy storage capacity expansion than generation
capacity expansion. Under the Wet scenario, 86 percent of the units benefit more from storage
capacity expansion. Finally, for the Dry scenario, 55 percent of the power plants benefit more
from energy storage capacity expansion than from generation capacity expansion. However,
nearly 40 percent of the plants increase their revenues by less than $5 per MWh from storage
capacity expansion. The plants that do not spill are responsible for this low increase in average
shadow prices.

Figure 20shows the changes of marginal benefits of energy storage and generation (turbine)
capacities relative to the Base case with different climate warming scenarios. Under the Dry
scenario, marginal benefits of energy generation capacity of all units are lower than the Base
case, because water supply availability is the limiting factor. For about 50 percent of plants, the
value of expanding energy storage under drier conditions is more than it is with the Base case,
allowing more winter inflows to be shifted to high-value summer power generation (the
maximum difference can be as high as $28). For the Wet scenario, almost all units benefit from
energy storage capacity expansion, as well as from generation capacity expansion, reducing
spills and shifting generation from low-value to high-value months. In this case, energy storage
capacity expansion is more valuable than generation capacity expansion.
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Figure 18: Average Shadow Price of Energy Generation Capacity of 137 Hydropower Units in
California for 1985-1998 Period under Different Climate Scenarios and Historical Prices
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Figure 19: Average Shadow Values of Energy Storage and Generation Capacity of 137
Hydropower Units in California in the 1985-1998 Period under the Base (Top), Dry (Middle), and
Wet (Bottom) Climate Scenarios and Historical Prices
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Figure 20: Average Change of Energy Storage and Generation Capacity Shadow Values from the
Base Case with Dry (Top) and Wet (Bottom) Climate Scenarios (for 137 Hydropower Units in
California in the 1985-1998 Period) Based on Historical Prices

Climate Change Impact on Energy Demand, Pricing and on Hydrology

The previous section described climate warming effects on California’s high-elevation
hydropower system by focusing on the supply side (exploring the effects of hydrological
changes on generation and revenues), ignoring the warming effects on hydropower demand
and pricing. This section extends the previous results by simultaneous consideration of climate
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change effects on high-elevation hydropower supply and demand in California. The research
team used the ANNSs as long-term price forecasting tools to estimate the impact of climate
warming on energy prices. Two different ANN models were developed: 12 monthly based
ANN models calibrated for all price ranges (ANN1), and a single annually based ANN model
calibrated on Normal prices (ANN2).

Table 3 indicates how energy generation, energy spill, and annual energy revenue change
relative to Base case for different climate scenarios and forecasted future energy pricing. For
each climate warming scenario (Dry, Wet, or Dry-Seasonal), the average annual generation and
energy spills are the same no matter what the price representation is. Generally, when warming
effects on demand are considered, annual revenues decrease relative to the Base case for both
drier and wetter conditions. Depending on the ANN model used to forecast prices, there can be
significant differences in average revenues received, especially under drier conditions. Under
Dry climate, the difference in revenues between models using ANN1 or ANN2 is about

$130 million/year, and under Dry-Seasonal climate it reaches $180 million/year. Generally,
ANNT1 predicts higher annual average revenues than ANN2 under all climates. The Dry
scenario estimates more important decreases in revenue than the Dry-Seasonal one.

Table 3: EBHOM's Results (Average of Results over 1985-1998 Period) for Different Climate
Warming Scenarios Considering Simultaneously the Warming Effects on Hydropower Supply and
Demand (ANN1: Monthly Based ANN Model; ANN2: Annually Based ANN Model Calibrated on
Normal Prices)

Climate Scenario Base Dry  Wet Dry Dry-Seasonal Wet
ANN ANN ANN ANN ANN ANN
Price Model Historical 1 2 1 2 1 2

Generation 23 179 236 17.9 17.9 23.6
(1,000 GWh/year) ' ' ’ ' ' '
Generation change with
respect to the Base case -19.8  +5.8 -19.8 -19.8 +5.8
(%)
Spill (GWh/year) 130 9 1112 96 96 1112

Spill change with respect

-26 +756 -26 -26 +756
to the Base case (%)

Revenue 1726 1,482 1762 1533 1,400 1587 1,408 1718 1,660
(million $/year)

Revenue change with

respect to the Base case -141 421 -11.2 -18.9 -8.1 -18.4 -0.5 -3.8
(%)
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Generation Changes with Climate Warming

Figure 21 shows average monthly energy generation for 1985 to 1998 for different climate
warming scenarios, considering climate warming effects on high-elevation hydropower supply
and demand simultaneously. Results are summed from all of the 137 units modeled.

When climate warming effects on hydropower demand and pricing are considered, average
monthly generation increases in June and July and decrease from November to February under
all scenarios, compared to when those considerations were ignored. Less generation is
necessary in winter since there is less need for heating, and more generation is necessary in the
summer to satisfy the high cooling demand. Generation peaks in June or July (depending on the
ANN model considered), but both ANN models result in a peak in summer. The highest peaks
occur in June for ANN2 and reach 2,500GWh/month for Dry ANN2; 2,700GWh/month for Dry-
Seasonal ANN2; and 2,900GWh/month for Wet ANN2. Dry-Seasonal scenarios estimate more
generation in July and August than Dry scenarios. In the rest of the months, generation is not
considerably sensitive to warming effects on energy demand.
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Figure 21: Average Monthly Generation (1985-1998) under Dry (Top) and Wet (Bottom) Warming
Scenarios, Considering the Warming Effects on Hydropower Supply and Demand Simultaneously
(Future Energy Pricing Is Forecasted Using ANNs — ANN1: Monthly Based Model; ANN2: Annually

Based Model Calibrated on Normal Prices)

Reservoir Storage Changes with Climate Warming

Figure 22 shows how average total end-of-month energy storage of the system (in all reservoirs
combined) changes with drier and wetter scenarios respectively, with climate warming effects
on hydropower demand is also considered.
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Figure 22: Average Total End-of-Month Energy Storage (1985-1998) under Dry (Top) and Wet

(Bottom) Warming Scenarios, Considering the Warming Effects on Hydropower Supply and

Demand Simultaneously (Future Energy Pricing Is Forecasted Using ANNs — ANN1: Monthly
Based Model; ANN2: Annually Based Model Calibrated on Normal Prices)

Reservoirs start refilling earlier in the Dry scenarios than they do in the Wet scenarios and the
Base case. In the Dry scenarios, the system must take maximal advantage of the water available
from late autumn to spring, to release it when prices are the highest, i.e. in summer. Between
February and June, the system stores more water in its reservoirs when future changes in
demand are considered than when they are ignored. This is true for both drier and wetter
scenarios. Less energy is needed in cold months, so more water is available to be stored until
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high-demand months. The peak storage occurs in May under all climate change scenarios. In
the rest of the months, less energy is stored when changes in demand are considered. On
average, the system’s total storage capacity is never met. The main difference between the two
ANN models is that on average less energy is stored in summer for ANN2 compared to ANN1.
There is no significant difference between the Dry and Dry-Seasonal scenarios, except slightly
less storage in summer for the latter scenario.

Energy Spills with Climate Warming

Figure 23shows the distribution of total average monthly energy spill for dry and wet climate
scenarios, considering changes in future demands. All spills occur in the refilling season
(December to May) before release when demand and prices are high. The energy spill patterns
are similar between all dry scenarios and between all wet scenarios. Considering the warming
effect on demand does not alter the average monthly spill pattern. Average energy spills of
about 850GWh occur in February under Wet scenarios. EBHOM suggests emptying reservoirs
in advance since it has perfect foresight into the future.
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Figure 23: Average Monthly Total Energy Spill (1985-1998) under the Dry (Top) and Wet (Bottom)
Warming Scenarios, Considering the Warming Effects on Hydropower Supply and Demand
Simultaneously (Future Energy Pricing Is Forecasted Using ANNs — ANN1: Monthly Based Model;

ANN2: Annually Based Model Calibrated on Normal Prices)

Revenue and Energy Price Patterns under Climate Warming

Figure 24 shows climate warming’s effects on the monthly average price received for generated
energy, for drier (a) and wetter (b) scenarios, respectively, considering climate warming effects
on hydropower supply and demand simultaneously.
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Figure 24: Frequency of Monthly Energy Price (1985-1998) under Dry (Top) and Wet (Bottom)
Warming Scenarios , Considering the Warming Effects on Hydropower Supply and Demand
Simultaneously (All Months, All Years, All Units) (Future Energy Pricing Is Forecasted Using ANNs
— ANN1: Monthly Based Model; ANN2: Annually Based Model Calibrated on Normal Prices)

Prices received under Dry ANN2 and Dry-Seasonal ANN2 exceed the monthly average Energy
prices received under Base case (85 percent of the time under Dry ANN2 and Dry-Seasonal
ANN2 and 60 percent of the time under Dry ANN1 and Dry-Seasonal ANN1). The aggregate
monthly energy price received under both Dry-Seasonal scenarios exceeds those under their
respective Dry scenario. Aggregate monthly energy prices for 1985-1998 are about $150-
$160/MWh when ANNT1 is used; whereas, they are about $180-$190/MWh when ANN2 is used
under Dry scenarios. Generally, monthly energy prices when the scenario is based on ANN2
exceed those when ANNT is used. Monthly energy prices under Wet ANN1 never exceed those
received under the Base case scenario or other Wet scenarios. Prices received under Wet ANN2
are lower than those found under the Base case and Wet scenario (based on historical prices) 85
percent of the time, but exceed both of those the rest of the time. Generally dry scenarios
increase monthly energy prices relative to the Base case; whereas, Wet scenarios decrease prices.
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Figure 25: Frequency of Total Annual Revenue (1985-1998) under Dry (Top) and Wet (Bottom)
Warming Scenarios, Considering the Warming Effects on Hydropower Supply and Demand
Simultaneously (Future Energy Pricing Is Forecasted Using ANNs — ANN1: Monthly Based Model;
ANN2: Annually Based Model Calibrated on Normal Prices)

Figure 25shows the effects of climate warming on the frequency of total annual revenues from
the system for the 14-year period (1985-1998) for drier (a) and wetter conditions (b), considering
climate warming effects on hydropower supply and demand simultaneously. Under dry
conditions, annual revenues received are always lower than those under Base case. Although
monthly average prices received for generated energy were higher under the Dry scenarios, the
increase in average prices received does not compensate for the Dry scenarios” reduction in
energy generation. For drier climate, considering the simultaneous effects of climate warming
on hydropower supply and demand leads to an increase in annual revenues when the model is
based on ANNI1, and a decrease when the model is based on ANN2. For wetter conditions,
considering the simultaneous effects of warming on hydropower supply and demand decreases
revenues compared to when those effects are neglected. For all climate warming scenarios
ANNT increases revenues compared to ANN2; this has already been discussed in reference to
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long-term price forecasting; monthly based models (ANN1) are likely to overestimate future
prices.

Benefits of Expanding Energy Storage and Generation Capacity

Figure 26 shows, on average, how energy storage capacity expansion changes hydropower
generation revenues for drier (a) and wetter (b) climate scenarios over the 14-year study period.
These figures indicate the average shadow price of energy storage capacity (the increase in
annual revenue per 1 MWh energy storage capacity expansion) for all 137 reservoirs. Average
annual revenues can be increased by expanding storage capacity in all plants (except for six
plants under Dry ANN1 and Dry ANN2), although such expansion might not be justified due
to expansion costs. In the summer, demand increases and energy is valuable, so the system
benefits from storing more snowmelt water. Increase in annual revenue per IMWh energy
storage capacity expansion is between $45 and $81 for the 137 studied plants under drier
scenarios considering changes in demand. Under wetter scenarios demand increase may not
increase the benefit of storage capacity expansion. Expanding storage capacity can be more or
less beneficial than when demand changes were ignored, depending on the ANN forecast
model used. Under Dry ANN1, expanding energy storage capacity is more valuable for about
50 power plants than under wetter scenarios, which is surprising. Greater benefits of storage
capacity expansion for Wet scenarios were expected since the additional capacity can be more
frequently used. However the estimations from ANN2 seem more reasonable.

Figure 27 indicates the average shadow price of energy generation (turbine) capacity (increase
in annual revenue per 1 MWh of annual energy generation capacity expansion) for the entire
system, under drier (a) and wetter (b) climate warming scenarios. Considering climate warming
effects on demand attenuates the benefits from expanding energy generation capacity under
wetter scenarios relative to the Wet scenario, based on historical pricing. This is also true for
drier conditions, except for the Dry-Seasonal ANN1 scenario. Increase in annual revenue per

1 MWh energy generation capacity expansion is $22, $15-17, and $22-24 for the 137 studied
plants under the Base, drier, and wetter scenarios, respectively.

Figure 28indicates how the marginal benefits of energy storage and generation capacity
expansion of power plants vary with the different scenarios (each point is a power plant). It
clarifies the relative importance of extra energy generation and storage capacity for each unit for
all climate scenarios. Under all climate warming scenarios, expanding energy storage capacity is
typically more beneficial than expanding generation capacity if the expansion costs are the
same. Expanding energy storage capacity allows water to be stored in off-peak months and then
released through turbines when prices are higher. Depending on the ANN forecast model,
between 45 and 52 plants under drier scenarios, and between 15 and 18 plants under wetter
scenarios, benefit more from energy generation capacity expansion (out of 137 plants in total).
Energy storage capacity shadow price is 1.81-2.32 and 1.93-2.27 times higher than the energy
generation shadow price for all power plants under Dry and Wet scenarios considering
warming effects on demand.
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Figure 26: Average Shadow Price of Energy Storage Capacity of 137 Hydropower Units in
California in the 1985-1998 Period under Dry (Top) and Wet (Bottom) Warming Scenarios,
Considering the Warming Effects on Hydropower Supply and Demand Simultaneously (Future
Energy Pricing Is Forecasted Using ANNs — ANN1: Monthly Based Model; ANN2: Annually Based
Model Calibrated on Normal Prices)
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Figure 27: Average Shadow Price of Energy Storage Capacity of 137 Hydropower Units in
California in the 1985-1998 Period under Dry (Top) and Wet (Bottom) Warming Scenarios,
Considering the Warming Effects on Hydropower Supply and Demand Simultaneously (Future
Energy Pricing Is Forecasted Using ANNs — ANN1: Monthly Based Model; ANN2: Annually Based
Model Calibrated on Normal Prices)
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Figure 28: Average Shadow Values of Energy Storage and Generation Capacity of 137
Hydropower units in California in the 1985-1998 Period under Dry (Top-Left = Dry-ANN1 and Top-
Right = Dry-ANN2) and Wet (Bottom-Left = Wet-ANN1 and Bottom-Right = Wet-ANN2) Warming
Scenarios, Considering the Warming Effects on Hydropower Supply and Demand Simultaneously
(Future Energy Pricing Is Forecasted Using ANNs — ANN1: Monthly Based Model; ANN2: Annually
Based Model Calibrated on Normal Prices)

Figure 29shows the changes of marginal benefits of energy storage and generation (turbine)
capacities relative to the Base case with drier and wetter warming scenarios. Patterns for Dry-
Seasonal scenarios are similar to the Dry scenarios, so they are not shown in the figure. Under
Dry ANNI1 and Dry ANN2, marginal benefits of expanding energy generation capacity for all
units are lower than they are under the Base case. There is less inflow, so the existing generation
capacity is more often sufficient to avoid spills. For between 75 and 87 of plants (55 to

63 percent), the value of expanding energy storage capacity under drier conditions is more than
it is under the Base case. For Wet ANN1 and Wet ANN2 scenarios, most units (121 and 112,
respectively) benefit more from energy storage capacity expansion than those under the Base
case. Under the wetter scenarios, about 50 percent of plants benefit from expanding both
generation and storage capacities, but energy storage capacity expansion is more valuable, as
the scatter in Figure 29expands to the right.
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Figure 29: Average Change of Energy Storage and Generation Capacity Shadow Values from the
Base Case from Dry (Top-Left = Dry-ANN1 and Top-Right = Dry-ANN2) and Wet (Bottom-Left =
Wet-ANN1 and Bottom-Right = Wet-ANN2) Warming Scenarios (for 137 Hydropower Units in the
1985-1998 Period), Considering the Warming Effects on Hydropower Supply and Demand
Simultaneously (Future Energy Pricing Is Forecasted Using ANNs — ANN1: Monthly Based Model;
ANN2: Annually Based Model Calibrated on Normal Prices)

Pure Price Increase Scenarios Coupled with Climate Warming Scenarios

Figure 30 shows the average annual revenues for each price increase scenario (+0 percent,

+30 percent, and +100 percent by year 2100) coupled to warming scenarios. The inputs used
with EBHOM are monthly revenue curves, which are the integration over the price frequency
distribution. Therefore, a linear price increase by K percent increases annual revenues by

K percent. For instance, a price increase of 100 percent under a Dry scenario increases average
annual revenue by 100 percent relative to the initial Dry scenario. Revenues are increased by

K percent (K=30 or 100) under each price increase scenario, and so are average shadow prices of
energy generation expansion and energy capacity expansion. Energy storage expansion and
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energy generation expansion become more valuable when price increase scenarios are

considered.

Average annual energy generation and energy spills are identical whether or not a price
distribution was increase by K percent for each climate warming scenario. The same behavior is
observed for average monthly generation, average end-of-month storage, and energy spill
patterns. The system optimized for revenue maximization responds in a similar manner to the
price distribution increased by a constant percentage than to the initial price distribution.
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Figure 30: EBHOM’s Annual Revenue Results (Average of Results over 1985-1998 Period) for
Different Climate Warming Scenarios Coupled to Price Increase Scenarios by 0%, 30%,and 100%.
Scenarios Are Based on Historical Prices, or Forecasted Future Energy Prices from Monthly ANN
Models (ANN1) or an Annual ANN Model (ANN2). The Horizontal Axis Crosses the Vertical Axis at

the Base Case (+0%) Average Revenue Value.
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Section 7: Limitations and Future Direction

Climate warming might have impacts on California’s high-elevation hydropower system in the
next century. This work is aiming to estimate the effects from a change in both hydrological
conditions and energy demand and pricing. What we are interested in is the “big picture”; so
many simplifying assumptions were necessary and should be considered in interpreting the
results. Results from this work give, however, some insights on how the system works and how
it might adapt to climate change.

Temperature data from several meteorological stations were averaged to define a temperature
dataset for California, even if temperature varies consistently from area to area. As the big-
picture study, this work also ignores the effects of climate variability on hydropower supply
and demand. This is an important drawback of the study that may be addressed by future
research. Furthermore, future studies may use hourly temperature data from other sources such
as the National Climatic Data Center (NCDC) and Climate Reference Network.

Energy demand was included in ANN modeling as a third-order polynomial function of
temperature. This function was estimated by Franco and Sanstad (2006) to correlate the daily
mean demand to the average daily temperature. Estimating hourly demands through this
function implies that the hourly demand follows the same pattern as the mean daily demand.
This seems to be a reasonable assumption, knowing that we are interested in the big picture
over California and that temperatures are also flattened. However, future studies may consider
proper mapping of the hourly prices that contain the many peaks that may result from periods
of peak demand. Historically, peak loads have been increasing year after year, and this was not
considered in this modeling study. Future research could improve the experiment from this
work by considering the development of two ANNSs in series: the first to estimate a nonlinear
response of demand from temperature, and the second to estimate a nonlinear response of price
from demand.

Processing time for ANN calibration is a limiting factor. Using a more powerful computer
system or opting for a simpler ANN optimization method, such as the Levenberg-Marquadt
algorithm, could enhance the ANN architecture and accelerate the calibration process. Several
independent calibration runs could then be performed to find the optimal set of weights (which
should converge to identical values). However, even if the SCE-UA optimization algorithm is
complex, it should have a high probability of finding the global optimum (Duan et al. 1992).

In the present research, two ANN models were developed; 12 parallel monthly models for all
price ranges and one annual model for normal range prices (from which price spikes have been
removed). Each approach presents advantages and drawbacks for mapping hourly prices
accurately. Monthly models deal with all price ranges, and there is no arbitrary elimination of
price intensities that could be abnormal (or not). However, it is possible that the ANN does not
learn anything from these high prices, which might bias the learning phase.

One main drawback of the monthly models appears when using ANNSs as forecast tools, and
results from their inability to extrapolate. The temperature data samples are perturbed to
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account for climate warming and then fed to the ANN. Some of these temperatures will be far
off the range of the monthly calibrations datasets, and the ANN will face new examples. This
might lead to overestimation of the prices. An annual ANN model may be more appropriate to
deal with increases in temperature, because these temperatures might have occurred
historically in other periods of the years, i.e., in other months. The annual ANN model trained
on normal prices should model those with rather high accuracy according to Lu et al. (2005),
who mention that it is necessary to remove price spikes from calibration to improve accuracy.
When using this annual ANN model as a forecast tool, it is assumed that the future proportion
of price spikes will remain the same as for 2005-2008. The future energy market was assumed to
stay not ideally competitive, with operators giving priority to profit maximization, leading to
possible manipulations of the market. However, it is worth mentioning that in an “ideal” or
highly supervised energy market spikes should not occur, except when demand exceeds
supply. Further research should deepen price spikes modeling.

The two ANN models developed here do not distinguish workdays from weekends or public
holidays. This was seen in some works on short-term price forecasting (e.g., Gao et al. 2000;
Amjady and Keynia 2010a) and should be considered in further research. Future research could
develop two parallel ANNSs: one for workdays and one for both weekends and holidays, since
those have similar price patterns.

Real-time energy prices for the period 2005-2008 were employed to calibrate the ANN models
and to model the Base case of EBHOM. Application of longer-period price datasets might
improve the ANN mapping accuracy, as ANN models are reliant on the quantity and quality of
data. The price set from 2005-2008 does not exactly match the energy prices from the runoff
data period 1985-1998. This might cause some inaccuracies in EBHOM'’s estimation of revenues
and energy prices but should not affect other results (generation, spills, and storage) much, as
the energy price trends are similar between years (Madani and Lund 2010).

Calibration of EBHOM is likely to underestimate energy storage capacities (Madani and Lund
2009), and therefore also underestimate the adaptability of the system to climate changes.
Availability of spill or energy storage capacity data would reduce this source of error (Madani
and Lund 2010).

Population growth rate was not considered here for future scenarios. However, the work from
Aroonruengsawat and Auffhammer (2009) showed that it had significant impacts on projected
demand. Even a low population growth rate of 0.18 percent per year predicts an increase of

65 to 70 percent in residential electricity demand by 2100, which completely outpaces the
increase resulting from climate change (Aroonruengsawat and Auffhammer 2009). Additional
scenarios, including population increase scenarios, could be developed in future research work.

Finally, for problem simplification, price elasticity of demand was not included in this work. If
energy prices start rising substantially, it is very probable that consumers will save money by
saving energy. The consequent demand decrease will affect energy prices and so on. A
recurrent ANN could be more suitable for modeling such phenomenon if compared to a
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feedforward ANN, but a recurrent ANN is more complex to implement and time-consuming to
train. An econometric model could also be built to estimate this price elasticity of demand.
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Section 8: Conclusions

The main objectives of this research project were to develop a tool to model the effects of
climate warming on future energy demand and pricing, and to estimate the consequent impacts
of climate change on California’s high-elevation hydropower system. An ANN model was
chosen to map the nonlinear relationship between temperature, energy demand, and prices.
This model was then used to forecast energy prices for different climate warming scenarios.
Two ANN models were developed: a monthly based model calibrated on all price ranges, and
an annually based ANN model calibrated on normal prices (with price spikes removed). Price
spikes in the CalISO energy market were identified as prices exceeding $128/MWHh, based on
real-time energy prices for the period 2005-2008. For the model calibrated on normal prices, the
same proportion of price spikes (with the same intensities) was assumed to occur in future. In
this work, the energy market was assumed to remain not ideally competitive with priority
given to profit maximization.

The ANN price forecast model estimated higher energy revenues in warm months for high-
forcing climate scenarios than for low-forcing scenarios, and vice-versa in cold months. This
corresponds to a higher demand for cooling in summer and a lower demand for heating in
winter. The magnitude of changes in revenue is, on average, higher for the monthly based ANN
models than for the annually based ANN model, but monthly models may overestimate prices.

The EBHOM model was run to examine Dry and Wet climate warming scenarios under
historical prices. The results showed that energy generation increased from January to April
under the Wet scenario; snowmelt water is plentiful, and the system has limited capacity to
store the shift in peak runoff. Average monthly generation also increased under the Dry
scenario from January to March, relative to Base case, but decreased in the rest of the months,
since less inflow is available. For Dry warming scenarios (representing the worst-case), the
month that the reservoirs refilled shifted to earlier in the year, to capture the shifted snowmelt.
The peak end-of month storage was in May for both scenarios; whereas, it was in June under
Base case. Under the Wet scenario, energy spills increased by nearly 1,000 GWh between
January and April compared to the Base case. Energy spills occur when the system cannot store
all the incoming runoff or send it through the turbines. Even if average generation increased by
nearly 6 percent under the Wet scenario relative to Base case, average revenues only increased
by 2 percent, because spills increase. Under the Dry scenario, average generation decreased by
20 percent, but revenues only decreased by 14 percent relative to Base case, showing that the
system is able to adapt, to a certain extent, to changing hydrology. The system increases annual
revenues if either energy storage or energy generation capacity is expanded under the Wet and
Dry scenarios, relative to the Base case. Energy storage capacity expansion is more beneficial
than generation capacity expansion, although such expansion might not be justified due to
expansion costs. As expected, benefits of capacity expansion are greater for the Wet scenario,
when the additional capacity can be more frequently used.

The study also compared the EBHOM model’s results when climate change effects on high-
elevation hydropower supply and demand in California are simultaneously considered to those
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from studies that ignored demand changes. Energy generation increased in warm months when
demand is high and energy is valuable, and decreased in winter, when less heating is needed
and prices are off-peak. This held true for both climate warming scenarios and both ANN
models. Between February and June, end-of-month storage increased under all scenarios
relative to results from studies that ignored demand changes. Less energy is generated in
warmer winters; therefore, it is available to be stored until the high-demand season. Energy
spills are not much different from EBHOM's results based on historical pricing. Under the Wet
scenarios, energy revenues decreased, because average energy price received decreased and
average energy revenues were lower than in Base case. Under the Dry scenario, revenues were
always lower than Base case, and the monthly based ANN model suggested more revenues
than the annually based ANN model. The system under the Dry scenarios benefited more from
energy storage capacity expansion than when historical prices were considered. The marginal
benefits from energy generation expansion under both the Dry and the Wet scenarios that
considered the effects of warming on demand are estimated to decrease relative to results of
studies that did not consider those effects.

Finally, expanding the energy storage capacity of California’s high-elevation hydropower
system seems to be the most beneficial option to adapt to climate change and maximize the
increase in revenue, although such expansion might not be justified due to expansion costs. The
benefits gained range from $29 to $81/year/MWh when changes in demand are considered,
depending on the climate scenario. Future research should conduct a case-by-case study of the
benefits gained by each power plant to decide whether storage or generation capacities should
be expanded at each unit.

The identified differences between the estimated impacts of climate change on California’s
high-elevation hydropower system with consideration and without consideration of climate
change effects on hydropower demand and pricing have an important policy implication:
“Studies that ignore the climate change effects on the demand side of hydropower systems do
not provide a reliable picture of the system in the future and the positional effects of climate
change effects on hydropower demand and pricing must be considered in future adaptation
studies and policy making regarding hydropower.”
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Acronyms

ANN Artificial Neural Network

ARIMA  Autoregressive Integrated Moving Average
ASCE American Society of Civil Engineers

CalISO  California Independent System Operator
CalPX California Power Exchange

CBO Congressional Budget Office

CCCC California Climate Change Center

CCE Competitive Complex Evolution

CPI Consumer Price Index

EBHOM Energy-Based Hydropower Optimization Model
ECP Electricity Consumption Per Capita

ESI Electricity Supply Industry

GCM Global Climate Model

GFDL Geophysical Fluid Dynamics Laboratory
GHG Greenhouse Gas

GW Gigawatts

GWh Gigawatt-hours

HEESA  Hydro-Environmental and Energy Analysis
IPCC Intergovernmental Panel on Climate Change
KWh Kilowatt-hour

Logsig  Logistic sigmoid

MLP Multi-Layer Perceptron

mm Millimeter
MSE Mean-Squared Error
MW Megawatts

NCAR  National Center for Atmospheric Research
NCDC  National Climatic Data Center
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NN Neural Network

NOAA  National Oceanic and Atmospheric Administration
NOCAL Northern California Region referring to Sacramento area
NSM No-Spill Method

OASIS  Open Access Same-time Information System

PCM Parallel Climate Model

PG&E Pacific Gas & Electric

RMSE Root Mean-Squared Error

SCE Southern California Edison

SCE-UA  Shuffle Complex Evolution — University of Arizona
SDG&E  San Diego Gas & Electric

SOCAL  Southern California region, referring to the area around Riverside
SRES Special Report on Emissions Scenarios

Tanh See Tansig

Tansig ~ Hyperbolic tangent

USGS U.S. Geological Survey

WSPC Water Science and Policy Center

Glossary

Nominal Price: “The price paid for a product or service at the time of the transaction. Nominal
prices are those that have not been adjusted to remove the effect of changes in the purchasing
power of the dollar; they reflect buying power in the year in which the transaction occurred.”
(Source: EIA, http://www.eia.doe.gov/glossary/index.cfm?id=N)

Normal Prices: Prices that are not price spikes, i.e., positive price values below the threshold
defining price spikes.

Predictor: A neuron in the input layer of an artificial neural network.

Predictand: A neuron in the output layer of an artificial neural network.
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APPENDIX A:
Artificial Neural Network

Background and Motivation: ANNs to Model Electricity Prices

Artificial neural networks (ANNSs) are networks of interconnected neurons that were developed
in an attempt to reproduce the powerful human brain’s architecture (Hsieh and Tang 1998).
They are powerful machine learning models that have been successfully developed for different
purposes, namely for nonlinear modeling (e.g., Kingston et al. 2005) and classification (e.g.,
Olsson et al. 2004). They provide an appealing solution for relating input and output variables
in complex systems (Dawson and Wilby 2001) and have been widely applied in different fields,
such as hydrological modeling (e.g., Dawson and Wilby 2001; Kingston et al. 2005; Olsson et al.
2004), electricity load forecasting (e.g., Azadeh et al. 2006; Ortiz-Arroyo et al. 2005; Hippert and
Taylor 2010), and electricity price short-term forecasting (e.g., Ranjbar et al. 2006; Zarezadeh et
al. 2008; Gao et al. 2000).

In recent years there has been active research to develop accurate short-term price forecasting
tools for the energy market (e.g., Zhao et al. 2007; Lu et al. 2005; Amjady and Keynia 2010a;
Yamin et al. 2004; Zarezadeh et al. 2008). Electricity price is a nonlinear, time-variant, and
volatile signal owning multiple periodicity, high frequency components, and significant
outliers—i.e., unusual prices (especially in periods of high demand) due to unexpected events
in the electricity markets (Amjady and Hemmati 2006). California’s electricity supply industry
turned into a competitive, deregulated market in the 1990s (CBO 2001). This deregulation
created competition among electricity producers and retailers who need price forecasts to
develop their bidding strategy in the electricity market (Lu et al. 2005; Amjady and Hemmati
2006). Optimal decisions are now highly dependent on market electricity price (Amjady and
Keynia 2010a). For instance, electricity generation scheduling is based on profit maximization in
the unregulated environment; whereas, it was based on cost minimization —to satisfy the
electricity demand and all operating constraints—in the earlier regulated environment
(Zarezadeh et al. 2008).

Dealing with short-term price forecasting, ANNs have shown a good ability to forecast normal
electricity prices (Zhao et al. 2007). One of the main advantage of ANNSs over traditional
methods such as regression and time series or autoregressive integrated moving average
(ARIMA) is that they are more adapted to long-term patterns, as they can cope with high
nonlinear behavior of the target signal (Amjady and Hemmati 2006). However, one main
problem encountered in most studies is the inability of the models to deal with price spikes in
the electricity market (e.g., Zhao et al. 2007; Lu et al. 2005; Amjady and Keynia 2010a; Yamin et
al. 2004). Generally, price spikes are abnormal market clearing prices that include abnormal high
prices, which are prices much higher than normal prices (Zhao et al. 2005). Price spikes are
highly erratic and are caused by a number of complex factors and unexpected events such as
transmission network contingencies, transmission or congestion, and generation contingencies
(Zhao et al. 2007). According to Lu et al. (2005), almost all the existing techniques require that
price spike signals be filtered out in order to forecast normal prices with rather high accuracy.
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To the best knowledge of the authors, research on ANNSs has exclusively focused on short-term
price forecasting following market needs. No ANN model has been developed for long-term
electricity price forecasting accounting for climate change scenarios, nor for estimating impacts

of future climate on any other variable.

ANN Model Types

A typical ANN consists of a number of neurons (also called nodes) that are organized into a
specific arrangement (ASCE 2000). One way of classifying neural networks is by the direction of
information flow and processing, i.e., feedforward and recurrent networks (ASCE 2000). In a
feedforward network (Figure A-1), information flows unidirectionally from an input layer
toward an output layer. In between the input and output layers there can be one or several
hidden layers processing information before it reaches the output layer. In this case, neurons are
only connected between different layers, but not to other neurons belonging to the same layer.
In a recurrent network, information flows in both directions—inputs toward outputs and vice
versa—and nodes belonging to the same layer can be interconnected. Recurrent networks allow
modeling dynamic systems by making feedback possible in the network, but it is also possible
to treat explicitly dynamic systems with feedforward networks by including lagged inputs

(Maier and Dandy 2000).

Feedforward networks (also known as multilayer perceptron, or MLP, models) are commonly
used for prediction and forecasting applications in hydrological problems (ASCE 2000;
Kingston et al. 2005) and in short-term electricity price forecasting (e.g., Ranjbar et al. 2006;
Zarezadeh et al. 2008). Feedforward networks have, in general, a faster processing speed than
recurrent networks (Maier and Dandy 2000), and Hornik et al. (1989) showed that with a single
hidden layer they can approximate any nonlinear function, given that sufficient degrees of
freedom (i.e., hidden neurons) are provided.

Input Hidden Output
layer layer layer

Network Network
Input Output
X Y

Source: ASCE 2000

Figure A-1: Schematic Diagram of a Feedforward Three-Layer ANN

Figure A-2 shows a schematic diagram of a neuron j. This neuron transforms an input vector
X = (x1, ..., Xi e, Xp) into a single outputy;. Neuron ‘" is characterized by a set of weights
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represented by a vector W; = (w1 jr s Wijy e, Wy j), a bias b;, and an activation function f. The
inputs to the neuron can be causal variables (i.e., inputs to the system if the neuron is in the
input layer), or they can be outputs from neurons belonging to previous layers. The activation
function determines the response of the neuron as follows: y; = f(X * W; + b;). Sigmoid
functions, namely logistic sigmoid (‘logsig’) or hyperbolic tangent (‘tanh’ or ‘tansig’), are
commonly used in the hidden layers (ASCE 2000). They return a nonlinear output response
which makes them a useful tool to map nonlinear processes and are usually combined to a
linear activation function in the output layer (ASCE 2000).

b.

Source: ASCE 2000

Figure A-2: Schematic Diagram of a Neuron "j"

For a model to represent reality as accurately as possible, the model has to be trained and
optimized. Training, or calibrating, an ANN model is the process of adjusting its parameters
(i.e., weights) to minimize a predefined error function (Kingston et al. 2005). A data sample is
presented to the model, and the error is calculated by comparing the simulated and the
observed target intensities.

Local or global search optimization algorithms may be used to train the ANN (Maier and
Dandy 2000). Local search methods scan the error surface in a single direction; whereas, global
search methods scan the error surface in different directions simultaneously (Kingston et al.
2005). Back-propagation algorithm is among the most widely applied methods to train an ANN
in hydrological modeling (Maier and Dandy 2000) and in electricity price short-term forecasting
(e.g., Ranjbar et al. 2006; Zarezadeh et al. 2008). The radial basis function method and the
conjugate gradient method are both examples of other local search algorithms (ASCE 2000).

One of the major drawbacks of local-type search optimization methods is that they are not
designed to handle the presence of multilocal optima (Duan et al. 1992). It is therefore not
guaranteed that the user will obtain the global optimum, as the ANN may get stuck in one of
the local minima of the error surface (Kingston et al. 2005). Global search methods have the
ability to escape local minima in the error surface and shall, in principle, find the optimal
weight configurations (Maier and Dandy 2000). Genetic algorithms and Shuffle Complex
Evolution algorithms are examples of global search methods that have been applied in the
hydrological field (Kingston et al. 2005). See Maier and Dandy (2000), ASCE (2000), and Duan et
al. (1992) for a more exhaustive review of training methods.
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During the training phase, the ANN has to be adjusted to minimize the error function. The
optimal ANN architecture is commonly determined through a trial-and-error procedure, by
trying out a different number of hidden layers and nodes (ASCE 2000; Maier and Dandy 2000).
Increasing the size of the ANN increases the number of free parameters (weights). An ANN
should contain enough parameters to improve its capacity to map a complex relationship
between the inputs and outputs (Dawson and Wilby 2001). However, increasing the size of the
network over a certain threshold may produce the opposite effect if the ANN starts overfitting
the data, annihilating its ability to generalize trends (Dawson and Wilby 2001). This
phenomenon appears when the ANN performs well during the training period but produces
poor results if a new data sample is presented to the ANN (Hsieh and Tang 1998). Cross-
validation procedure, also referred to as cross-training, is commonly used to prevent overfitting
(Maier and Dandy 2000). It consists of dividing the data sample into three sets —usually called
the training, validation, and test sets —and then using them independently to check when the
ANN is optimized. The ANN is considered to be optimized when the training set minimizes the
error function and the error starts increasing in the validation phase (ASCE 2000). It has also
been suggested in literature that if the number of training samples exceed a specific threshold,
which is defined by a ratio between the number of training samples and the number of
connection weights, overfitting will not arise. These ratios can vary consistently in literature
(Maier and Dandy 2000), but they should be interpreted as follows: the higher the number of
training samples, the lower the probability of overfitting the data.

ANN Model Set Up

The method used to design the ANN was inspired from the protocol for implementing the
ANN Rainfall-Runoff model defined by Dawson and Wilby (2001) and modeling suggestions
from Maier and Dandy (2000). The modeling process steps will be explicitly detailed as far as
possible, so that the validity of the model and results can be assessed. The following procedure
was used:

Selection of the adequate predictors and predictands and data collection

Data analysis and preprocessing

ANN selection: choice of an appropriate network type and training algorithm
Network training: choice of the architecture and training set

Evaluation of ANN performance

G L=

Data Collection: Predictors and Predictand Selection

Hourly prices were selected as the only predictand. Real-time hourly energy prices for 2005-
2008 were collected from the California ISO (CalISO) Open Access Same-time Information
System (OASIS) website (http://oasishis.caiso.com/). In April 2009 a new market design was
implemented: instead of looking at three main price zones, CalISO started using locational

marginal pricing that produces prices at 3,000 different pricing nodes around the California
grid. Therefore the datasets from after April 2009 are considerably different from those in the
previous system, so data could not be gathered easily for 2009. CalISO serves more than

55


http://oasishis.caiso.com/

30 million consumers with electricity, so these hourly prices are considered to be representative
for California’s energy market.

Electricity price is driven by many factors in a competitive energy market (Ranjbar et al. 2006).
Research works applying ANNs to short-term price forecasting have chosen, among others, the
following predictors: historical hourly prices, system loads, lagged hourly prices, and day of the
week, as they are often easily accessible (e.g., Ranjbar et al. 2006; Zarezadeh et al. 2008). Gao et
al. (2000) also considered fuel costs, power import/export data and other weather variables. In
the present research, the following inputs were chosen: temperature, demand, season, month,
day of the week, hour, lagged hourly temperatures for the three previous hours, and a “degree-
day” temperature input. The season is expected to account for the annual price variability, the
hour for the daily periodicity, and the day of the week for the weekly periodicity —that is, to
distinguish workdays from weekends.

Hourly temperature data for the period 2005-2008 were extracted from the website of the
University of California Statewide Integrated Pest Management Program (UC IPM)
(www.ipm.ucdavis.edu/WEATHER/wxretrieve.html). These data were available for several
pest stations across California, but not further north nor further south than Fresno and Colusa
Counties, respectively. It was decided to extract hourly data from three different pest stations
and to define their average as the representative temperature for California.

Hourly electricity load data were also collected from the CalISO OASIS website
(http://oasishis.caiso.com/) for 2005-2008. Demand was estimated using temperature data,
based on the work of Franco and Sanstad(2006). Using daily demand of electricity from 2004 for
the area services by the CalISO, Franco and Sanstad found out that there is a high correlation
between the daily demand and the average daily temperature measured in four locations of
California. They approximated the relationship by the U-shaped third-degree polynomial
plotted in Figure A-3, indicating the minimum daily demand for T,,,;;, = 53,5°F. Estimating
hourly electricity demands through this function implies that the hourly demand follows the
same pattern as the mean daily demand. This seems to be a reasonable assumption for this
work, since we are interested in the big picture. However, future research may consider
mapping hourly prices that contain many peaks, which might result from periods of peak
demand, more properly.
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Figure A-3: Electricity Demand in the CallSO Area as Function of Average Daily
Temperatures, 2004

Data Analysis and Preprocessing
Data Analysis

ANN s rely on the quantity and quality of the calibration data (Kingston et al. 2005). A
preliminary data analysis was performed to better understand the varying nature of hourly
prices, and to determine if there were any major abnormal trends. Temporary irregularities in
the energy market or extreme weather conditions may, for instance, lead to substantial
variations in energy prices, while being the result of single events; hedging the generalization
capacity of ANNSs.

Table A-1 shows the main statistical characteristics of the set. The dataset has a mean of
$57/megawatt-hour (MWh) and a standard deviation of around $37/MWh. Around 80 percent
of the data are in the range $25-$90, but the hourly prices are highly volatile, with prices up to
$400/MWh, which is seven times the average price.
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Table A-1: Dataset Statistical Characteristics Before Preprocessing

Prices in $/MWh Price Percentiles in $/MWh

Standard
Average Deviation Minimum Maximum 10th 25th 50th 75th  90th

56.77 36.52 0.00 399.99 2423 3778 50.85 67.18 89.91

The hourly price time-series for 2005-2008 is plotted in Figure A-4, where two “abnormal”
trends are noticed (circled in the figure) with exceptionally high prices. Figure A-5 is plot of
monthly average prices in each year. The same two periods of higher-than-normal prices can be
observed. The first one happened in 2005, where prices started increasing in July, reached a
maximum average value of $80/MWh in October, and only dropped to normal levels in January
2006. The second period of higher-than-normal prices happened in the first half of 2008 and
peaked to a monthly average value of more than $100/MWh in June 2008. A specific
investigation of these two periods was conducted, and is described in the following paragraphs.
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Figure A-4: Real-time Hourly Prices Observed for the Time Series 2005-2008
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Figure A-5: Average Hourly Prices Per Month for Each Year 2005-2008

In 2005, national natural gas prices increased substantially over levels seen in 2004 (CalISO
2006), resulting in increasing production costs for electricity. This steady rise began in January
and later on prices peaked immediately after Hurricanes Katrina and Rita hit the U.S. Gulf
Coast (CalISO 2006). The most destructive wave of the hurricanes occurred the last week of
August in southeast Louisiana and caused severe destruction along the Gulf Coast, from central
Florida to Texas. In particular, national gas production and transportation infrastructures in the
Gulf of Mexico region were destroyed (CalISO 2006). After this event, Western markets —which
had not been directly affected by the hurricanes —started trading gas at a discount of
approximately $2/mmBtu (million British thermal units) compared to national prices
(Department of Market Monitoring — CalISO 2006). In December 2005, a cold snap, coupled
with limitations to the Gulf Coast transportation and production infrastructure, resulted in a
second peak, with California prices reaching their highest levels since December 2000 (CalISO
2006).

The climatic conditions of 2008 were investigated, as extreme temperatures can lead to an
increase in electricity demand, and drought conditions can lead to a reduction in generation
from hydropower units. According to the National Oceanic and Atmospheric Administration
(NOAA) (2009), summer and fall 2008 were warmer than average in California, as it
experienced its sixth warmest summer and third warmest fall on record; whereas, temperatures
in winter were slightly below normal. California experienced its driest spring (March to May)
on record, and also received below-normal precipitation in summer and fall 2008 (NOAA 2009).
At the same time, the snowpack was referred to as among the healthiest in more than a decade
in some parts of the Western United States, with most locations near to above average (NOAA
2009).

From these facts, it is hard to assess if there was a shortage of supply, as the abundant
snowpack runoff may have compensated for the drought. However, the 2008 Annual Report
from CallISO (2009) states that “monthly average hydroelectric production in 2008 was below
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2007 levels for most months and well below the monthly production levels for 2005 and 2006.”
Furthermore, the same report from CalISO (2009) explains that the primary driver of the high
electricity prices in 2008 was the spike in worldwide fossil fuel costs. Natural gas, which is the
primary fuel for California’s energy supply, reached its highest price level since Hurricanes
Katrina and Rita affected much natural gas infrastructure in 2005. These high natural gas prices,
coincident with low hydroelectric production in California in the first half of that year, resulted
in high production costs of electric power in 2008 and the need for additional electricity imports
from the Pacific Northwest and Southwest (CalISO 2009). The senior vice-president and chief
customer officer of Pacific Gas & Electric (PG&E) also declared that “The combination of
skyrocketing natural gas prices, increased electricity demand and lower supplies of
hydroelectric power are having a significant impact on the cost of electricity” (PG&E 2008).

As the main focus of this paper is to investigate the relation between prices and climate, prices
are plotted against temperature in Figure A-6. The top graph is a plot of the raw hourly data,
while the bottom one shows the average price corresponding to each degree Fahrenheit. From
the top graph, no obvious conclusion can be drawn regarding the relationship between the real-
time prices and the temperature. This strengthens the need for a powerful modeling tool able to
represent highly nonlinear relationships. The bottom plot in Figure A-6 shows that prices tend
to increase for both low (>30°F, or >-1°C) and high (>90°F, or 32°C) temperatures, but more
significantly for high ones. This corresponds to the great need for cooling in the long warm
periods in California. In-between average temperatures are around the mean of the entire set,
which is 57°F (14°C). Electricity prices in 2008 were higher than those in other years for most
temperatures above 50°F (10°C), due to the reasons discussed earlier.

It is well known that the hour of the day has a significant influence on demand, and therefore
on price. Figure A-7, which shows the hourly average prices in each season, was plotted to
check this affirmation. From Figure A-7 one can see that the main difference between seasons
occurs between hours 12 and 20. The high cooling demand in summer increases the price,
peaking at hour 17, while the “no” or little heating demand in winter decreases the price.
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Data Preprocessing

Bases on the data analysis results, the research team decided to exclude the period September to
December 2005 from the input data to the ANN as they partly result form an extreme event
(Hurricane Katrina) and would most probably hedge the training of the neural network. The
price increase in 2008 was the result of a combination of several factors. It was decided to keep
the 2008 data for two reasons: to keep a great quantity of data, and because soaring prices of
fossil fuels together with dry periods are most likely to occur again in the future. However, an
additional neuron in the input layer was introduced to account for this specific phenomenon.
This input is equal to 1 for the period January to June 2008, and 0 otherwise.

Table A-2 shows the statistical characteristics of the preprocessed dataset. Negative price
intensities were set to zero and the overall zero-depth probability is 1.30 percent.

Table A-2: Dataset Statistical Characteristics Before Preprocessing

Prices in $/MWh Price Percentiles in $/MWh

Standard
Average Deviation Minimum Maximum 10th 25th 50th 75th  90th

54.87 36.54 0.00 399.99 23.88 36.88 49.13 64.14 84.28

The last stage of the data preprocessing was the standardization of the hourly prices and
temperatures, by subtracting the mean value of the set and dividing it by the standard
deviation. Standardized temperature data ranged between -2.72 and 3.05 and standardized
price data between -1.50 and -9.44. The output data (i.e., the hourly prices) were then scaled
between 0.1 and 0.9 to avoid squashing when using the log sigmoid function in the hidden layer
(and similarly between -0.9 and 0.9 when using the hyperbolic tangent activation function).

ANN Selection

A multilayer feedforward ANN was coupled with the global-search algorithm developed by
Duan et al. (1992) called the “Shuffle Complex Evolution” (SCE-UA). A single hidden layer with
a sigmoid activation function was chosen. The choice of the sigmoid function (tansig or logsig)
and the number of hidden neurons were based on a sensitivity analysis detailed later in the
paper. The activation function in the output layer is linear. Cross-validation was used as the
stopping criteria to prevent overfitting the training dataset. The model was developed in
FORTRAN by Juan Martin Bravo in application to river discharge analysis and was modified
for this case study.

The general idea of the SCE-UA algorithm is to generate a population of random points from
the feasible space of parameters that will evolve toward an optimal solution: the global
minimum of the error surface. First, the population is divided into several communities (called
complexes) that evolve independently. Within each community, only the part of the population
with the best probability of converging toward a global solution is kept and stored in a “sub-
complex” using the Complex Evolution Algorithm (CCE) (Duan et al. 1992). The points stored
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in the sub-complex will become parents by generating offsprings toward an improvement
direction. Each sub-complex will generate offsprings in different directions toward an optimum,
based on its own “knowledge” of the error surface. The population is mixed regularly, in order
to share the knowledge between the communities and to ensure survivability.

A set of optimum parameters will eventually be found, after several iterations of the procedure.
None of the information from the sample is ignored, as each member of a community is a
potential parent with the ability to participate in the reproduction process. The evolution
process also ensures that the communities do not become trapped in unpromising regions. The
SCE-UA method has good convergence properties over a broad range of problems, and it
should have a high probability of finding the global optimum (Duan et al. 1992).

The flowchart of the SCE-UA algorithm, and further description of the algorithm’s steps, can be
found in Duan et al. (1992) and (1994).

Duan et al. (1994) established some guidelines on how to choose the algorithmic parameters in
the SCE-UA model. The parameters were initialized to the recommended values (n is the
number of parameters to optimize):

e Number of points in complex: m=2n+1

e Number of points in each sub-complex: q=n+1

e Number of consecutive offspring generated by each sub-complex: a=1
e Number of evolution steps taken by each complex: B=m=2n+1

Finally, the number of complexes is problem-dependent and was chosen based on sensitivity
analysis detailed later in the paper.

Network Training

The cross-validation procedure was chosen to prevent overfitting/overtraining. The dataset was
partitioned into three sets — calibration, test, and validation —in the following proportions:

50 percent, 25 percent, and 25 percent, respectively. Data was split randomly between the sets,
but a control was performed to ensure a good distribution among the different sets by checking
that extreme (or close to extreme) values of price and temperature were within the training set,
and that means and standard deviations of all sets were similar. The training set should be
representative of the entire population and include all ranges of intensities, because ANNs are
unable to extrapolate (Maier and Dandy 2000).

Evaluation of ANN Performance

The results of the ANN modeling were assessed in terms of: correlation with the determination
coefficientR?, root mean square error (RMSE), the ANN’s output price patterns, and the
frequency distribution of prices. Because the dataset is large, it is important to assess the quality
of the developed model not only based on R? value. Furthermore, it is important to keep in
mind that in this research, the final desired output from the ANN model is to draw revenue
curves for each month (for several climate change scenarios) that will serve as inputs to the
EBHOM model. These revenue curves are nothing else than the integration over the price
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frequency curves for each month (Madani and Lund 2009), so the frequency distribution of
prices was directly assessed in terms of revenue curves.

ANN Model Set Up

ANN training was performed through a trial-and-error process. First, a sensitivity analysis was
performed, to determine the best network architecture and the training algorithm parameters; it
also included an assessment of the choice of some inputs. Several dataset breakdowns were
then considered based on both deterministic and stochastic approaches. Finally, the research
team performed a comparison of the different ANN models developed, to select the ANN
model to be used as a long-term price forecasting tool.

Sensitivity Analysis
An ANN is a black-box model that has to be calibrated to determine the optimal architecture
and parameters. The sensitivity analysis included assessment of the following parameters:

e Number of complexes for the SCE-UA optimization algorithm, and number of
hidden neurons (nodes)

e Logsig vs. tansig activation function

e Relevancy assessment of the input selection

Number of Complex and Hidden Neurons

The optimal numbers of complex and hidden nodes were determined in the same way. The first
models developed used only one complex and hidden neuron and were then independently
increased to 2, 4, and 8 in the next models. Higher values were also tried, but the time required
to run such models over the entire dataset exceeded 48 hours, which was considered excessive.
Time is a limiting factor in the ANN model improvements. A single hidden layer was chosen, as
it should be enough to model any nonlinear relationship (e.g., Hornik et al. 1989). Table A-3
showsR? values for the different models tried to estimate the adequate number of complex and
hidden neurons. Correlation in terms of R? value improves with increasing number of
complexes and hidden neurons, so they were both set to 8 for the next modeling steps.
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Table A-3: Calibration Results Used to Select the Adequate Number of Complex and
Hidden Neurons

Number Hidden Activation

Run Complex neurons function R%.in R%,1ia R%
1 1 4 logsig 0.26 0.23 0.24
2 8 4 logsig 0.27 0.23 0.25
3 1 8 logsig 0.27 0.23 0.26
4 8 8 logsig 0.29 0.25 0.24
s 8 1 logsig 020 018 019
6 8 logsig 0.22 0.19 0.21
7 8 4 logsig 0.27 0.23 0.25
8 8 8 logsig 0.29 0.25 0.24

Logsig vs. Tansig Activation Function

A sigmoid-type activation function —usually logistic sigmoid (logsig) or hyperbolic tangent
(tansig) —is commonly used in the hidden layer (Maier and Dandy 2000).A comparison of
ANNSs with identical architectures and these two activation functions (see Table A-4) led to the
choice of tansig for the following reasons:

e Correlations are similar for both ANNS.

e The average price returned by the ANN using tansig function is closer to the average of
historical prices. It also returns higher maximum price values.

e Tansig function was used in earlier research works applying ANNs to short-term
electricity price forecasting (e.g., Ranjbar et al. 2006; Zarezadeh et al. 2008; Gao et al.
2000).

Table A-4: Results Used to Select the Adequate Activation Function in the Hidden Layer

Activation Average Price Maximum Price
Run Function R ($/MWh) ($/MWh)
Historic - - 54.87 399.99
9 Logsig 0.25 54.96 177.59
10 Tansig 0.25 54.93 217.39

Relevancy Assessment of the Selected Inputs

First, an ANN model using only a temperature input was tried, and then additional inputs
(season, month, day, hour, temperatures in three earlier hours, and load) were included. The
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correlation improves significantly when more predictors are considered (see Table A-5, where
RZ;,, jumps from 0.08 to 0.23) because temperature only cannot represent accurately the high
volatility of electricity prices. Among the other predictors, none were assessed during the
sensitivity analysis, except the load input. ANN models should be able to determine single-
handedly which inputs are critical, but it might increase processing speed if the inputs selected
a priori have little importance (Maier and Dandy 2000).

Table A-5: Results Used to Select the Adequate Activation Function in the Hidden Layer

Number Hidden Input Activation

Run Complex neurons neurons function RZ%,, RZ%,., R%, R%, RMSE
11 8 2 1 logsig 0.09 0.07 0.08 0.08 0.070
12 8 2 8 logsig 025 021 023 023 0.065
13 16 4 1 logsig 0.09 0.07 009 0.09 0.070

Two approaches were imagined to estimate the impact of climate change simultaneously on
electricity demand and prices. The first approach involved developing two ANN s in series,
with the first one modeling demand using temperature and the other predictors, and the second
one estimating prices based on the output demand from the first ANN. The second approach
involved building a single ANN considering that demand is a linear function of temperature
previously estimated by Franco and Sanstad (2006). A model using this demand function was
compared to a model using historical hourly demand to estimate if results would be improved
by using historical hourly demand data gathered from CalISO (http://oasishis.caiso.com/).

Using historical hourly demand data improved the R? correlation by only 0.03 (see Table A-6)
which was not considered as a significant improvement. In terms of revenue curves, it is hard to
assess which model is more accurate. In different months, different models fit the historical
revenues better, as illustrated for the June and October months in Figure A-8.
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Table A-6: Results Used to Choose the Demand Input to the ANN Between Historical Demand and
the Demand Function Defined by Franco and Sanstad (2006)

Run  Demand specification  R%Z..  RZ ., R, R%, RMSE
14 Demand = f (T) 0.30 0.24 0.27 0.28 0.140
15 Real demand 0.33 0.29 0.31 0.31 0.136
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Figure A-8: Revenue Curve Comparison Between Two Annually Based ANN Models Fed with
Historical Hourly Demand Data or with Demand as a Function of Temperature Estimated by
Franco and Sanstad (2006) for June (top) and October (bottom)

The research team chose to use the demand as a function of temperature, as estimated by
Franco and Sanstad (2006), for a few reasons: virtually no accuracy would be gained by using
direct hourly demand data from CalISO, training two ANNSs in series could be time consuming,
and there would be uncertainty in the estimation of demand from the first ANN model.
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Comparison of ANNs Developed for Different Dataset Breakdown

Generally in a competitive energy market, hourly electricity price series contain multiple
seasonalities, such as weekly and daily periodicities (Amjady and Hemmati 2006). It is very
hard for a single ANN to map correctly the input/output relationship of such a signal in all time
periods (Amjady and Keynia 2010b). In previous research, datasets have sometimes been
partitioned along: periods of warm/cool days (e.g., Ranjbar et al. 2006), public holidays (e.g.,
Amjady and Keynia. 2010a), workdays/weekends (e.g., Gao et al. 2000), or stochastic
components (e.g., Zhao et al. 2007). As part of the ANN calibration procedure, different data
breakdowns have also been tried out in this work. A summary of the experiments and results
obtained during training is given later in Table A-8; the results from the earlier sensitivity
analysis detailed earlier are not included.

This section first presents common results to all experiments and then discusses each

experiment and compares it to the others. Finally, two ANNSs are elected for estimating future
price representation.

General Comments on the ANN Results

General observations and comments can be drawn from the application of an ANN to model
electricity prices for the selected inputs in this research. The results from the calibration of the
ANN model over the entire dataset are used here for illustrative purposes (see Figures A-9-A-
11) and apply to all the other ANN models developed during calibration. Figure A-9 shows the
frequency of historical prices and ANN output prices, Figure A-10 plots the historical and ANN

output prices against temperature, and Figure A-11 shows the hourly price time series for 2006
and 2008.
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Figure A-9: Frequency of Historical and Modeled Prices for an Annually Based ANN
Trained on All Price Ranges from 2005-2008
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Figure A-10: Modeled Prices for an Annually Based ANN Trained on All Price Ranges (Green +)
and Historical Prices (Blue X) Against Temperature, 2005-2008
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Figure A-11: Price Time Series for 2006 (Top) and 2008 (Bottom) for an Annually Based ANN Model
Trained on All Price Ranges from 2005-2008 (Green +) and Historical Price (blue x)
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The ANN returns prices essentially in the range of $25-$100/MWh; lower and higher prices are
poorly modeled, and no prices higher than 300$/MWh are returned (see Figure A-9). The
frequency of prices belonging to the range $25-$100/MWh is very similar to the historical price
frequency, as highlighted in Figure A-9. This pattern reflects the ability of the ANN to
reproduce the historical price frequency where most data are available; around 80 percent of the
data belong to the range $25-$100/MWh. The ANN cannot however model the very high prices
because they are too rare. ANNSs learn better on the (frequent) average data than on the (rare)
extreme intensities (Olsson et al. 2004).

Price intensities start increasing significantly when temperatures exceed 80°F (27°C) (Figure
A-10), and the highest price intensities are returned by the ANN in the summer (Figure A-11).
This result was expected, as it corresponds to the high air-conditioning demand during summer
in California. High prices (over $100/MWh) observed for middle-range temperatures (40°F-
80°F, or 4.4°C-27°C) are not modeled (see Figure A-10). The inputs selected in this research are
presumably not driving these high prices, so this result seems reasonable. These high prices can
be considered as price spikes that are highly erratic in competitive energy markets and difficult
to model using ANNSs (Zhao et al. 2007), as discussed earlier.

From Figure A-11, one can see that there is a sudden price drop observed in the middle of 2008.
This was expected, as a binary input was added to account for the specific conditions in the first
half of 2008, as explained earlier.

Comparison of Dataset Breakdowns Based on Deterministic Variables

Inspired by previous works, several dataset breakdowns have been considered during ANN
calibration. To save time, training was carried out only on parts of the dataset (e.g., for two
hours of the day when an hourly data breakdown was considered). Based on the experimental
results given in Table A-7, further investigation was decided or not. The following data
breakdowns were tried, and Table A-8 shows the range of R 2 and RMSE values obtained for the
simulations:

e Seasonally based: Summer and Autumn
e Monthly based: January, April and July
e Hourly based: Hours 14 and 24

e Daily based: Tuesday and Saturday

e Workday-/Weekend-based

e Yearly based: 2007
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Table A-7: Range of R and Root Mean Square Error (RMSE) Values for
Data Breakdowns over Different Time Periods

Data breakdown RZimulation RMSE
Seasonally based 0.22-0.43 0.126-0.145
Monthly based 0.22-0.41 0.128-0.143
Hourly based 0.25-0.26 0.125-0.150
Daily based 0.24-0.36 0.116-0.142
Workday-/Weekend-based 0.28-0.33 0.121-0.144
Yearly based 0.20 0.136
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Table A-8: Summary of the Results from ANN Calibration for the Data Breakdown Experiments

Network Architecture Training Algorithm Results
Price range - Dataset Hidden Hidden  Activation Points per Points per
breakdown Inputs layers neurons function Complex complex sub-complex RZ . RZi4 Ri, R4,  RMSE'
All 11 1 8 Tansig 8 51 50 0.30 0.24 0.27 0.28 0.140
January 9 1 Tansig 8 2*Npar+1 Npar+1 0.26 0.20 0.25 0.24 0.128
April 9 1 8 Tansig 8 2*Npar+1 Npar+1 0.42 0.33 0.39 0.39 0.143
July 9 1 8 Tansig 8 2*Npar+1 Npar+1 0,44 0,38 0,37 0,41 0,138
October 9 1 8 Tansig 8 2*Npar+1 Npar+1 0.25 0.20 0.18 0.22 0.132
Summer 10 1 8 Tansig 8 51 50 0.46 0.39 0.40 0.43 0.145
Autumn 10 1 8 Tansig 8 51 50 0.33 0.13 0.08 0.22 0.126
Hour 14 10 1 8 Tansig 8 2*Npar+l Npar+1 0.30 0.24 0.20 0.25 0.150
Hour 24 10 1 8 Tansig 8 2*Npar+1 Npar+1 0.28 0.21 0.24 0.26 0.125
Tuesday 10 1 8 Tansig 8 2*Npar+1 Npar+1 0.28 0.24 0.17 0.24 0.142
Saturday 10 1 8 Tansig 8 2*Npar+1 Npar+1 0.41 0.24 0.33 0.36 0.116
Weekend-based 10 1 8 Tansig 8 51 50 0.38 0.27 0.30 0.33 0.121
Workday-based 10 1 8 Tansig 8 51 50 0.29 0.25 0.28 0.28 0.144
Year 2007 11 1 8 Tansig 8 2*Npar+l Npar+1 0.22 0.16 0.20 0.20 0.136
”Normal prices” 11 1 8 Tansig 8 51 50 0.39 0.37 0.38 0.38 0.079
“"Medium prices” 11 1 8 Tansig 8 51 50 0.36 0.36 0.34 0.36 0.069
“Low prices” 11 1 8 Tansig 8 51 50 0.10 0.09 0.04 0.08 0.035
”High prices” 11 1 8 Tansig 8 51 50 0.17 0.15 0.15 0.16 0.249

"RMSE: Root Mean Square Error



The different data breakdowns are compared in the next paragraphs.

Hourly based and daily based models

The hourly-based model was discarded from further analysis because it has a low
RZi 1 ulation Tange value and average RMSE value.

The correlation range for the daily based model simulations is R, yjation = 0-24 — 0.36 and
for the workday-/weekend-based modelR% | 1ation = 0-28 — 0.33.The partition between
workdays and weekends, requiring only two individual models, was preferred to a daily
data breakdown and the daily based models were abandoned. The division between
weekends and workdays has already been used for short-term price forecasting (e.g., Gao et
al. 2000) and will be assessed in detail later.

Hourly and daily based models have not been assessed based on other performance criteria
(e.g., frequency distribution) because it would require building each individual model to
extract monthly patterns, which was considered too time consuming.

Yearly based model

The model developed for year 2007 has the lowest determination coefficient among all
experiments, with R%,, 1ation = 0-20, and its RMSE value is not significantly reduced
compared to the model built for all four years of data. Figure A-12 is a comparison of the
revenue curves between this model and the model using the entire dataset for the months of
June and December. Generally, monthly revenue curves developed for the 2007 model are
further away from the historical data (or do not have a significantly better fit) than the
model using the four years of data. It was therefore decided to exclude the yearly based
model from further analysis.
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Figure A-12: Comparison of the Revenue Curves for Yearly Based ANN Model Calibrated on
2007 Data and an Annually Based ANN Calibrated on all Data for June (left) and December

(right)
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Monthly based, Seasonally based, Workday-/Weekend-based

Figure A-13is a comparison of April’s and July’s revenue curves for four ANN models:
seasonally based, monthly based, workday- and weekend-based models combined in
parallel, and base model using all the data. The best fit for the revenue curves can be
observed for monthly models and the summer model. The workday-/weekend-based model
produced a better fit than the base model for most months. It was decided to keep only one
model for the next steps of this research, and the monthly based models were elected, for
the following reasons:

e Generally, those models produced the best fit for the revenue curves —especially
for the month of April, where the other data partitions did not fit as well.

e This partition seemed the most appropriate to capture the monthly variability of
prices, which is of interest in this research.

e RZ uation = 0-22 — 0.41 and RMSE=0.13-0.14 are among the best errors from the
experiments together with the seasonal models.
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Figure A-13: Revenue Curves for Four ANN Models: Base (Calibrated on All Data),
Workday- and Weekend-Based Models Combined In Parallel, Seasonally Based
and Monthly Based Models for April (top) and July (bottom)
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Comparison of Dataset Breakdowns Based on Stochastic Variables

Additional dataset breakdowns were tried. This section presents the motivations for the
partitions considered, and their implementation is detailed later.

The first partition was inspired by an experiment made by Olsson et al. (2004) for rainfall
intensity classification. They first divided their dataset into different categories based on
rainfall intensity. Then they tried to use a stratified sample for ANN calibration, designed to
contain an identical number of intensities in each category. This may improve the ANN
training, as the learning capacity of ANNs is commensurate with the quantity of data
available (Olsson et al. 2004). This method was tried in the present research, since previous
experiments have not been able to capture low price intensities (below $25/MWh) and high
prices (above $125/MWh). In light of these results, the research team extracted a non-
representative subsample designed to contain a similar number of price intensities in
predefined price ranges.

The two following experiments were inspired by the work from Lu et al. (2005) and Zhao et
al. (2007), who spotlighted that ANNs were unable to model price spikes because they are
highly erratic, several orders of magnitude higher than the average price, often under-
represented compared to normal prices, and most likely not driven by the inputs selected in
the present work. With respect to the use of ANN models, this is a delicate issue. ANNSs are
trained better on the range of intensities that is the most frequent in the calibration set
(Olsson et al. 2004). Therefore, scattered outliers will be poorly modeled. According to Lu et
al. (2005), almost all the existing techniques for short-term price forecasting require that the
price spike signals be filtered out, in order to forecast normal prices with rather high
accuracy.

As defined by Lu et al. (2005) high price spikes are prices exceeding the threshold P.:

P,=u+268 (Eq. 1)

where p is the mean of historical market price and § is the standard deviation of the prices.
In the present case study, price spikes correspond to prices exceeding $128/MWh, including
3.7 percent of the price population and representing 12.9 percent of cumulated price
intensities. Many high-intensity prices happened in 2008 but probably are not really price
spikes, as these resulted from a global increase in electricity prices. Their intensity is still
“abnormally” high, so it was decided to make no distinction between those and other price
spikes. Very few price spikes seemed to have occurred in 2005, but this is partly because
four months of data were removed. Most spikes occurred in spring and summer.

Based on the previous comments, the following data partitions were considered:

e A stratified dataset considering five price ranges.
¢ Division of the set between “normal prices” (below the threshold Pv) and price
spikes.
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e Division of the set between ““low prices” (including the 10 percent lowest price
intensities), “Medium prices” (prices between low prices and the threshold Pv),
and price spikes.

Stratified dataset breakdown

Five categories of prices p (given in [$/MWh]) were defined on the basis of the cumulative
distribution of prices: 0 <p <25; 25 <p <50; 50 <p <75; 75 <p < 100; 100 <p. Each category
contained 1,000 data samples, giving a total of 5,000 data samples, 15 percent of the original
dataset. Then the set was divided into training, test, and validation sets, as usual for
calibration. The optimized ANN for eight hidden neurons gaveRfmining =0.29
andR?imulation = 0.28.

Figure A-14 shows the prices plotted against temperature. Prices below $20/MWh and
above $150/MWh are still not captured. Visually, the agreement between historical and
modeled prices is not improved for high temperatures, compared to the earlier models, e.g.,
the annually based model calibrated on all prices. This ANN model calibrated on a
stratified sample was abandoned, as it did not capture the low and high prices as wished.
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Figure A-14: Price Obtained from the ANN Trained over a Stratified Sample
(2005—-2008) Against Temperature

“Normal prices” model

The correlations obtained from the “normal price” model are very much improved
compared to the ANN developed for the entire dataset. The simulation for the optimal
parameters gives Rz .iation = 0-38 and RMSE = 0.08 (compared to RZuiation = 0-28 and
RMSE = 0.14 for the annually based ANN model trained over all prices).
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Figure A-15 shows the prices plotted against temperature. Prices below $20/MWh and
above $90/MWh are still not modeled properly. Too few data belong to these ranges
compared to the quantity of data available in the interval 20-90%/MWh to be modeled
adequately by the ANN. This observation led to the next experiment considering a division
between low, medium, and price spikes.

A second ANN was developed for the set of price spikes. As expected these could not be
modeled accurately because there are too few data (1191 data samples), the spikes are very
volatile, and they are probably not driven by the selected inputs. No further investigation to
model price spikes was carried out, as it is beyond the scope of this work. Further research
could consider applying a “damping scheme” as proposed by Yamin et al. (2004) or using
similar reasoning.
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Figure A-15: Prices from an ANN Model Trained over “Normal” Prices (below $128/MWh)
Against Temperature (2005-2008)

Price spikes represent only 3.7 percent of the price population, but their summed intensities
reach nearly 13 percent of the total. Two options were foreseeable to deal with price spikes:
considering that a certain percentage of price spikes will occur in the future, or that there
would not be any more spikes. The reliable choice depends on how the energy market is
projected to evolve. Lu et al. (2005) showed that in an ideal competitive electricity market,
price spikes should only occur when the demand exceeds the supply. However, most
markets are not ideally competitive, and gaming behaviors probably influence the market
(Lu et al. 2005). It has also been argued that suppliers take advantage of the vulnerability
(storage difficulties, generation capacity constraints, and transmission congestion) of the
electricity market by withholding their capacity so as to shift supply-and-demand curves
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and force price spikes (Zhao et al. 2007). Therefore, if the market operation is expected to
stay as it is today —which is the assumption we make in the present work—then price
spikes should be kept unimpaired, as they will most likely continue to occur. If the market
is envisaged to turn toward an “ideal” competitive market, or toward a highly supervised
market that prevents spikes, then spikes should be removed.

The percentage of future energy spikes is assumed to be the same as in the Base case.
Unimpaired price spikes were added to the modeled price set, and Figure A-16 shows the
revenue curves for the models calibrated on all prices or on normal prices for June and
September. The model developed for “normal prices” fits better historical data.

“Medium-price” and “low-price” models

Figure A-17 displays the plot of prices versus temperature for the medium-range prices,
which gives RZ,,,iation = 0-36 and RMSE = 0.07 (compared to RZ,,,,1ati0n = 0-38 and RMSE
= 0.08 for the “normal prices”). Surprisingly, these results are not far off from the results
obtained for normal prices, and the correlation in terms of R? value is even lower. The same
price trend as for “normal” prices is observed, except that the lower bound of the modeled
prices is now higher; around $35/MWh. Truncating the 10 percent low prices did not help
the ANN to reproduce the low range of the calibration set, and it increased the price set’s
average. ANNs usually return outputs where most data are available (Olsson et al. 2004);
this may be at the origin of this phenomenon; otherwise, no other explanation has been
identified to explain this trend.
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Figure A-16: Comparison of the Revenue Curves for Two Annually Based ANN Models: One
Trained on All Prices and One Trained on“ Normal Prices” (Price Spikes Truncated) for June
(Left) and September (Right). The Historic Proportion of Price Spikes in the Market Was
Assumed to Remain Constant for the Second Model.
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Figure A-17: Prices from an ANN Model Trained over “Medium” Prices (Between $22 and
$128/MWh) Against Temperature (2005-2008)

The second model developed for the set of the 10 percent lowest values returned prices
mostly around the average of the calibration set (cf. Figure A-18) the correlation is low,
RZiulation = 0-08. It is hard to assess if the ANN returned the prices follow an underlying
relationship; this dataset breakdown was abandoned.
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Figure A-18: Prices from an ANN Model Trained over “Medium” Prices (Between $22 and
$128/Mwh) Against Temperature (2005-2008)
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Summary of the Findings and Choice of the Optimum ANNs

Among all the dataset breakdowns tried out in this research, two divisions stand out:

e Monthly based models
e Annually based model calibrated on the “normal” price (i.e., excluding price
spikes)

Monthly models were elected because they visually fit well historical patterns and seem
appropriate to capture the monthly variability of energy prices. The annual model trained
for normal prices improves the determination coefficient but requires filtering out the
spikes, assuming that all prices over a certain range are non-natural price spikes. The same
proportion of spikes was assumed to occur in the future.

The two models are compared hereafter in terms of monthly price frequency distribution
using revenue curves. The visual agreement between the revenue curves for January, April,
and July (see FigureA-19) is very similar between the two models and historical data; April
is the only month of the year for which the curves have a significant different pattern.

Both models were kept because it is not possible to know which one is the most accurate.
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Figure A-19: Comparison of the Revenue Curves for the Monthly Based ANNs and the
Annually Based ANN Calibrated on “Normal Prices” (Price Spikes Truncated) for January
(top), April (middle), and July (bottom)
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Application of ANN to Long-Term Price Forecasting

Climate Warming Scenarios

This research estimated the impacts of climate warming by 2100 on hourly electricity prices
based on five scenarios, shown in Table A-9 and adapted from the simulations of twenty-first
century climates evaluated by Cayan et al. (2009). The study assumed that the statewide
temperature increase is the average of the temperature increases in southern and northern
California. This average value was considered to be representative of the high electricity-
demand areas—the highly-populated areas in California which are of interest in this work. This
study also assumed that the increase estimated by Cayan et al. (2009) is based on mean values
for the historical period (1961-1990) and that the increase is based on mean values for (2005-
2008).

Four scenarios consider a constant temperature increase throughout the year, and one high-
forcing scenario (GFDL-A2-Seasonal) considers a higher increase in summer and a lower
increase in winter, respectively, than in the rest of the year. As no more information was
gathered about the temperature increases in spring and autumn, these values were assumed to
be equal to the average annual temperature increase.

Table A-9: Climate Change Scenarios for California

Far-Term Period (2070-2099) Temperature
Change (°F) *

Spring (MAM) &
Scenario Name  GCM  SRES Winter (DJF) Summer (JJA) Fall(SON)

GFDL-A2-Annual GFDL A2 +8,0 +8,0 +8,0
PCM-A2-Annual PCM A2 +4,6 +4,6 +4,6
GFDL-B1-Annual  GFDL B1 +4,9 +4,9 +4,9
PCM-B1-Annual PCM Bl +2,8 +2,8 +2,8
GFDL-A2-Seasonal GFDL A2 +6,0 +10,5 48,0

* The temperature change in spring and fall was assumed to be equal to the average annual
temperature change.

Source: Adapted from Cayan et al. (2009).

Results

Table A-10 shows the results for each climate warming scenario and ANN model. The
forecasted average price for all climate warming scenarios exceeds the Base case average price
($55/MWh). Monthly ANNSs predict higher average price increases than the Annual Normal
price ANN model for all scenarios; i.e. Monthly based ANNSs estimate higher price increases
than the Annual ANN.
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Figure A-20 shows the forecasted price intensities plotted against temperature for climate
warming scenario PCM-A2-Annual, for both ANN models (with monthly based models on the
top and annually based model on the bottom). Figure A-21 is the same figure, but for scenario
GFDL-A2-Annual. Prices increase for all scenarios for the highest temperatures relative to
historical prices; high forcing scenarios lead to high price increases, and low forcing scenarios to
lower price increases.

Table A-10: Price Distribution Statistics for Each Climate Warming Scenario and ANN Model

Prices in $/MWh Price Percentiles in $/MWh

Climate ANN Standard
scenario model Average Deviation Minimum Maximum 10th 25th  50th  75th  90th

(B:ZZZ i 54.87 36.54 0.00 399.99  23.88 36.88 49.13 64.14 84.28
GFDL-  ANN1  59.89 33.16 0.00 42566  30.78 41.04 51.73 7020 96.15
ii_nual ANN2  55.96 33.04 9.00 399.99  31.13 4058 4931 6195 76.11
PCM-A2- ANNI1  56.94 27.51 0.00 392.77  31.11 40.64 5091 6691 88.49
Annual  ANN2  55.5 32.74 9.76 399.99  31.31 4020 49.02 60.11 74.98
GFDL- ANNI1 6155 35.28 0.00 42566 3120 41.69 52.38 71.93 99.75
?f;sml ANN2  56.67 33.07 9.00 399.99  31.64 41.15 49.87 6324 76.89
PCM-Bl. ANN1  55.82 25.09 0.00 38430 3142 4055 50.64 6544 85.00
Annual  ANN2 55,03 32.57 10.73 399.99  31.67 4024 4898 4898 74.42
GFDL- ANN1  57.15 27.95 0.00 38850  31.11 40.67 5093 67.11 89.09
ilr;nual ANN2  55.30 32.76 9.62 399.99  31.27 4020 49.04 6024 75.04

Revenue curves for one month from each season (January, April, July, October) were plotted for
climate scenarios GFDL-A2-Annual and PCM-A2-Annual in Figure S A-22 and A-23, for ANN1
and ANNZ2, respectively. For both ANN models, all climate warming scenarios led to high
increases in revenues in summer months, and more attenuated increases in spring and autumn.
In winter, high forcing scenarios led to higher price drops relative to Base case if compared to
low forcing scenarios. These patterns correspond to what was expected: increased need for
cooling in warm months and decreased need for heating in winter months. For all climate
scenarios, the annually based ANN returns similar revenue curves in April. April is the
transition month between winter and spring seasons, so energy price patterns might be
different between years, and it is difficult for the ANN to learn the input-output relationship.
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The lower increases in revenue using an annually based ANN compared to those using
monthly based ANNs probably result from the time scale of the ANN models. In the case of an
annual model, temperature data samples from all twelve months of the year are fed to the ANN
during calibration, and the trained ANN has knowledge of all historical temperature ranges.
Most perturbed temperature samples for climate warming scenarios will not be out of range of
the calibration temperature range, except for the extreme highest temperature. Monthly based
models use a monthly calibration set; they are independent from each other and have no
knowledge of the price/temperature relationship mapped in other months. The highest
perturbed temperatures accounting for climate change of each monthly calibration set will be
unknown by the corresponding ANN, but might be known by other monthly ANN models.

Generally, monthly models might overestimate future price intensities. For illustrative
purposes, Figure A-24 shows the price distribution against temperature from the monthly based
and annually based ANN models under the GFDL-A2-Annual scenario in March. The monthly
model estimates very high price increases for the highest temperatures experienced in that
month (T>95°F); whereas, the annual model estimates more moderate price increases, which
seem more reasonable. Historically, this temperature range was experienced in other months of
the year —in spring for example—and was not responsible for such high prices. Having no
knowledge of the rest of the year, monthly-based ANNs might mis-estimate the input/output
relationship, and an annual (or seasonal) model may be more appropriate to deal with
perturbed temperatures.

Another possible reason for the lower increases in revenue estimated by the Annual ANN
model is that an ANN model learns from examples that are input during the training
procedure. Since this model was trained only for normal prices, it will not return prices much
higher than the ones fed during training. In the first experiment (monthly models for all prices
range), since price spikes were not removed, the ANN will more likely return high price
intensities.
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Figure A-20: Simulated ANN Prices and Historical Prices (2005-2008) for a PCM-A2-Annual
Climate Warming Scenario for Both ANN Models: Monthly Based ANNs (top) and Annually Based
Model Trained for “Normal Prices” and Unimpaired Price Spikes (bottom)
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Figure A-21: Simulated ANN Prices and Historical Prices (2005-2008) for a GFDL-A2-Annual
Climate Warming Scenario for Both ANN Models: Monthly Based ANNs (top) and Annually Based
Model Trained for “Normal Prices” and Unimpaired Price Spikes (bottom)
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