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• Inexpensive MEMS electric power sensors 
integrated with low power wireless radios will 
monitor end-user loads in homes and businesses, 
equipping electricity customers to respond to 
Demand Response events and ultimately 
facilitating remote management of loads.

• Sensors will be passive, requiring no power 
source for operation and thus dramatically 
improving the sensor node’s energy budget.

• Sensors will function accurately as proximity 
devices, requiring no contact to or wraparound of 
conductor, simplifying integration and retrofit.

• A novel design for a passive, proximity-based electric 
current sensor uses a permanent magnet mounted on the 
end of a piezoelectric cantilever.  The magnet is subjected 
to a sinusoidal force due to the AC magnetic field 
surrounding the conductor, and the piezoelectric element 
transduces this force into a measurable voltage signal.

• Experimental results, analytical models, and numerical 
simulations drive decisions about process and materials 
selection for the fabrication of a microscale device.

• What is the relationship between current in the wire 
and voltage out of the sensor?

• How will this current sensor’s output be affected as 
the device shrinks down to the microscale?

• What is the best way to fabricate the piezoelectric 
and hard magnetic components of a microscale
current sensor?
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Linear response of current sensor

increasing distance from center of 
conductor

Sensor voltage 
output is linearly 

proportional to 
current in wire 

as predicted by 
theory and 

confirmed by 
experiment

Numerical simulations suggest Aluminum Nitride as a 
promising piezo material for initial microscale prototypes
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This design 
could also 

be used as 
an energy-
scavenging 

power 
source for 

sensor 
nodes


