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» A novel design for a passive, proximity-based electric
current sensor uses a permanent magnet mounted on the
- end of a piezoelectric cantilever. The magnet is subjected
Q u ESt I o n s to a sinusoidal force due to the AC magnetic field
surrounding the conductor, and the piezoelectric element
» What is the relationship between current in the wire transduces this force into a measurable voltage signal.
and voltage out of the sensor?

Research

» Experimental results, analytical models, and numerical
» How will this current sensor’s output be affected as simulations drive decisions about process and materials
the device shrinks down to the microscale? selection for the fabrication of a microscale device.

* What is the best way to fabricate the piezoelectric
and hard magnetic components of a microscale PZT Aluminum Nitride V. ~F (dslj K
current sensor? !
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Numerical simulations suggest Aluminum Nitride as a

Sensor voltage . inear response of current sensor promising piezo material for initial microscale prototypes
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