## **Passive, Proximity-based Electric Current Sensors** for Demand Response Enabled Homes

Eli S. Leland Prof. Paul K. Wright Prof. Richard M. White

## Vision

· Inexpensive MEMS electric power sensors integrated with low power wireless radios will monitor end-user loads in homes and businesses, equipping electricity customers to respond to Demand Response events and ultimately facilitating remote management of loads.

- · Sensors will be passive, requiring no power source for operation and thus dramatically improving the sensor node's energy budget.
- Sensors will function accurately as proximity devices, requiring no contact to or wraparound of conductor, simplifying integration and retrofit.



## Research Questions

- · What is the relationship between current in the wire and voltage out of the sensor?
- · How will this current sensor's output be affected as the device shrinks down to the microscale?
- · What is the best way to fabricate the piezoelectric and hard magnetic components of a microscale current sensor?





**Findings** 



- · A novel design for a passive, proximity-based electric current sensor uses a permanent magnet mounted on the end of a piezoelectric cantilever. The magnet is subjected to a sinusoidal force due to the AC magnetic field surrounding the conductor, and the piezoelectric element transduces this force into a measurable voltage signal.
- Experimental results, analytical models, and numerical simulations drive decisions about process and materials selection for the fabrication of a microscale device.

|                                | PZT                |                      | Aluminum Nitride   |                      |
|--------------------------------|--------------------|----------------------|--------------------|----------------------|
|                                | 1 mm<br>cantilever | 500 µm<br>cantilever | 1 mm<br>cantilever | 500 μm<br>cantilever |
| resonance<br>frequency<br>(Hz) | 281                | 927                  | 434                | 1425                 |
| sensitivity<br>(mV/A)          | 0.59               | 0.28                 | 2.4                | 1.2                  |

| $V_{out} \approx F_{in} \left(\frac{d_{31}}{\varepsilon}\right) K$ |                            |                            |  |  |
|--------------------------------------------------------------------|----------------------------|----------------------------|--|--|
|                                                                    | PZT                        | AIN                        |  |  |
| d <sub>31</sub><br>(pm/V)                                          | -138                       | -3                         |  |  |
| ε <sub>r</sub>                                                     | 1800                       | 9                          |  |  |
| d <sub>31</sub> / <b>s</b> r                                       | 8.66 x<br>10 <sup>-3</sup> | 37.7 x<br>10 <sup>-3</sup> |  |  |

Numerical simulations suggest Aluminum Nitride as a promising piezo material for initial microscale prototypes











