ENERGY HARVESTING:

MEMS Piezoelectric Vibration Harvesting

Thermoelectric Harvesting

University of California, Berkeley

Multi-source Energy Harvesting

Industrial Pump

"Smart Roll" Thermoelectric Wireless Sensor Node "Smart Stamp" Piezoelectric Wireless Sensor Node

"Smart Stamp"

Progress made in past 6 months:

PIEZOELECTRIC

- Modeling completed
- Device optimization completed –
 P > 1 μW at matched frequency
- Investigating methods for frequency tuning

THERMOELECTRIC

- 1^{st} printed 50 couple prototype with 75µW/cm² @ $\Delta T = 20K$
- Future work on materials processing can improve device performance
- Exploring alternative geometries

Piezoelectric operating principle

Where we left you 6 months ago:

Progress: Optimization & redesign

Progress: Optimization conclusions

- 1. $P > 1 \mu W$ is attainable if optimize for specific vibration source
- 2. If optimized harvester is moved to different source, power drops off
- 3. A broadband or tunable device is needed

Progress: How to deal with the need to match harvester and source frequencies

- 1. Measure vibration source a priority, customize harvester
- 2. Make an array with harvesters of different resonances
- 3. Design broadband device
- 4. Active tuning
 - External applied force magnetic, electrostatic
 - Stiffness modification
 - Axial mechanical preload
- 5. Passive tuning
 - Mechanical stoppers
 - Nonlinear spring stiffness
 - Bi-stable oscillator

Multi-source Energy Harvesting

Industrial Pump

"Smart Roll" Thermoelectric Wireless Sensor Node "Smart Stamp" Piezoelectric Wireless Sensor Node

"Smart Roll"

Thermoelectric (TE) Operating Principles

Thermoelectric (TE) Energy Harvesting

Sources of Waste Heat

Location	Source	Temp. Gradient
Residential	Boilers, Dryers, Freezers, Oven	10-30K
Factories	Exhaust pipes, Boilers, Condensers	10-80K
Vehicles	Engine, Exhaust pipes	60K >100K
Airplanes	Cabin to External	10-50K

Thermoelectric Device Design

Where we left you 6 months ago:

Leg Dim.: 5 mm Length, 500 μm width, 200 μm thick

THERMOELECTRIC

- Printable semiconductor/epoxy thermoelectric materials synthesized
- Printed 10-couple prototype which produced 0.85µW for 20K temperature difference

Progress: Device Scaling & Fabrication

Device Prototype:

- 50 Couple Device (100 elements)
- •ΔT = 5, 10, 20 Kelvin
- •Element Dim.: 5mm x 640µm x 90µm
- Device Resistance ~ 2.5 k Ω
- Power Density $\sim 75 \mu W/cm^2 @ \Delta T = 20K$

Progress: Harvesting from Hot Pipes

- 100+ couples for D = 10cm
- Takes advantage of printing process
- "Rings" can be stacked

Cross- Sectional view of pipe and device

Progress made in past 6 months:

PIEZOELECTRIC

- Modeling completed
- Device optimization completed –
 P > 1 μW at matched frequency
- Investigating methods for frequency tuning

THERMOELECTRIC

- 1^{st} printed 50 couple prototype with 75µW/cm² @ $\Delta T = 20K$
- Future work on materials processing can improve device performance
- Exploring alternative geometries

Thank you! Any questions?

THERMOELECTRIC

Alic Chen (<u>alic.chen@berkeley.edu</u>) Deepa Madan, Dr. Rei-Cheng Juang, Michael Nill

Lindsay Miller (<u>lindsay@kingking.me.berkeley.edu</u>) Dr. Yiping Zhu

Di. 11ping 2114

Prof. Paul K. Wright & Prof. James W. Evans

Acknowledgements: California Energy Commission, CITRIS, Berkeley Manufacturing Institute, Berkeley Wireless Research Center

