ENERGY HARVESTING FROM VIBRATIONS, AIR FLOW, & TEMPERATURE CHANGE

Lindsay Miller, Alic Chen, Deepa Madan Lee Weinstein, Peter So, Thomas Devloo, Dr. Elizabeth Reilly, Dr. Yiping Zhu, Prof. Paul Wright, Prof. Jim Evans

System on a Chip

Multi-source energy harvesting

Progress made in past 6 months:

PIEZOELECTRIC

VIBRATIONS

- P_{rms} = 1.1 nW/beam, micro device on ambient source
- Developed process to modify frequency with printed mass

<u>AIR FLOW</u>

- Meso-scale prototype developed
- P_{rms} = 1.1 mW, optimal conditions

THERMOELECTRIC

TEMPERATURE DIFFERENCE

- Composite materials improved
- Developed scalable fabrication process for meso-scale devices
- P = 0.58 μW
 (ΔT = 10 K, 10-couple device)

Multi-source energy harvesting

Piezoelectric operating principle

Where we left you 6 months ago:

Progress: ambient vibration harvesting

- Tested 9 beams on 7 ambient sources reliably produce low power
- Almost finished with model measured accel. input → predicted beam output

Progress: print mass \rightarrow modify frequency

Successfully printed on 6 released beams with no "casualties"

 $\omega^2 = k/m$

Progress: print mass \rightarrow modify frequency

Progress: air flow harvester design

Progress: air flow harvester performance

Multi-source energy harvesting

Multi-source energy harvesting

Thermoelectric (TE) Operating Principles

Thermoelectric (TE) Energy Harvesting

Sources of Waste Heat

Location	Source	Temp. Gradient
Residential	Boilers, Dryers, Freezers, Oven	10-30K
Factories	Exhaust pipes, Boilers, Condensers	10-80K
Vehicles	Engine, Exhaust pipes	60K >100K
Airplanes	Cabin to External	10-50K

Thermoelectric Design

Where we left you 6 months ago:

THERMOELECTRIC

- Meso-scale prototype fabricated using dispenser printing technique
- Printable
 semiconductor/epoxy
 thermoelectric materials
 synthesized

Progress: innovative design of TE harvester

Traditional Design

- Aspect ratios from 1.5 to 2
- Commercially available
- Labor intensive assembly

Planar Design

- High aspect ratio pillars
- High density arrays
 - 900+ couples for D = 1cm
- Takes advantage of printing process

Progress: new design is easily scalable

1. Print Electrodes

2. Print N-type Semiconductor

3. Print P-type Semiconductor

4. Heat/Cure

- 3-layer printing process
- Element lengths are controllable

~~

 Printing process is scalable to larger production processes (i.e. screen printing, flexography)

Progress: performance of TE prototype

Progress summary

PIEZOELECTRIC

VIBRATIONS

- P_{rms} = 1.1 nW/beam, micro device on ambient source
- Modified frequency by 20 Hz with printed mass
- Beam signals add when in series

AIR FLOW

- Meso-scale prototype designed, built, & characterized in duct
- P_{rms} = 1.1 mW, optimal conditions

THERMOELECTRIC

TEMPERATURE DIFFERENCE

- Synthesized efficient, printable composite TE materials (ZT ~ 0.4)
- Developed scalable fabrication process for meso-scale devices
- P = 0.58 μW
 (ΔT = 10 K, 10-couple device)

Thank you! Any questions?

Acknowledgements: California Energy Commission, Siemens, CITRIS, Berkeley Manufacturing Institute, Berkeley Wireless Research Center