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Energy 
Harvester 

Power 
Conditioning 

Energy 
Buffer 

Power 
Conversion IC Loads 

Efficiently convert input 
energy when it occurs 

and at varying voltages 

Efficiently convert buffer 
voltage to load voltage(s) 

over a large dynamic range 

  Goals: 
  Architect power management system for wireless 

sensor elements 
  Design strategies for power conversion from various 

energy sources to the energy storage device 
  Design of integrated power management interfaces 

for sensor node subsystem loads. 

Node Powertrain Structure 

micropelt.com 

•  Thermoelectric  
–  Low Voc: 100mV/K 
–  10 µW/K/cm2 

–  Power changes w/ 
temp gradient 

•  Solar Cell 
–  Outdoor: 15000 
µW/cm2 

–  Indoor: 30 µW/cm2 
–  Single cell ~ 0.6Voc  
–  MPPT-> optimum 

energy extraction 

•  Piezoelectric 
–  device resonance 

tuned to anticipated 
source frequency 

–  AC output varies 
with vibration 
amplitude 

–  300 µW/cm3 
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Energy Harvester Interface Challenges Active RFID Tag 
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•  Self-powered Active RFID Tag 
–  10m communication (much further than passive RFID) 
–  50 µW  Wake-up RX Radio and 1mW TX 
–  Self-contained (postage stamp footprint but only mm’s thick) 
–  Fully integrated IC (single die) 
–  Small solar cell harvests enough energy for 24 hour operation 

Solar Cell 
•  2cmx1cm 
•  10µW avg (Indoor) 
•  Voc = 2.4V, Isc=10uA 

Printed Battery 
•  1cmx1cm 
•  Vbat ~ 1.1-1.9V 
•  Integration w/ 

substrate 

Loads (on Single Die) 
•  50 µW RX 
•  1mW TX 
•  0.5V Logic 
•  Power Management 

Multi-mode Operation Battery to Load Interface 

On-Chip 
Integrated 
Caps 

–  ~0.4mm^2 
–  Multi-topology 

for coarse 
regulation 

–  Multiple cells 
interleaved to 
reduce clock 
ripple 

Multiple Supply 
Rails 

–  500mV Vdd 

–  Ripple, Current 
specs vary 

Multi-Mode 
Operation 

–  Blocks turned off 
to reduce leakage/
standby current 

–  Wide output loads 
(3uA->100uA-
>10mA) 

Control Logic
–  Regulation 

Scheme 
–  Dynamic 

frequency & 
switch Scaling 

Analog Blocks
–  Voltage & 

Current 
references 

–  Low-dropout 
regulator for 
finer regulation 

Rail SC Clk State 
(WkUp, 
TX) 

Peak/Avg 
Load 

Max 
Time 

Ripple 
(mV) 

Cl Eng 
(uC) 

Vdd1 100kHz (X,X) 4uA .4s 5mV 1.6 
Vdd2_Osc 400kHz (1,0) 15.5/13.5 uA 4ms 1mV 20fF 0.06 
Vdd2_RX 400kHz (1,0) 120/100 uA 4ms 50mV 10pF 0.4 
Vdd2_TX 20Mhz (1,1) 8.5/7mA 10ms 50mV 20pF 70 

  Multiple voltage rails needed 
  Wide current load range 4uA->8mA (3 orders of magnitude) 
  Wake-up RX and heavily duty-cycled TX 

  Reduces Eng/cycle for TX from 70uC to .7uC (1%) or .07uC (.1%) 
  Standby mode consumes the most energy per cycle 

Reduce leakage in standby mode by power gating other rails 

Load Power Requirements 

Switched Cap Optimization 

  Cap area, switching freq, and switch 
area need to be optimized 
  Highly iterative process but can 

simplify system-level optimizations 
using circuit-theory based dynamic 
model (M. Seeman, 2007) 

  2 to 1V Conversion Ex. 
  CMOS 65nm process 
  Cap area: 0.25 mm^2 

  Losses:  
  SSL (main caps) 
  FSL (conduction) 
  Gate cap 
  Cap Bottom plate 
  Junction cap 

  Adjust for efficiency 
  Frequency scaling 
  Switch scaling 

Iload = 10uA 
Fsw = 24kHz 
Eff  = 90.5% 

Iload = 10mA 
Fsw = 21MHz 
Eff  = 89.1% 

Switch 
Parasitic 

FSL 

SSL Cap Bottom-
Plate 

Switched Cap Topology 

Topology Select
–  2:1 or 3:1 
–  3:2 also possible 

but not needed for 
battery range 

Future Work 

  Efficiency improvements at lower power states (sub uW) 
  Wider input voltage range (100mV->10V)  
  More/finer conversion ratios 
  Regulation over wide output load 
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