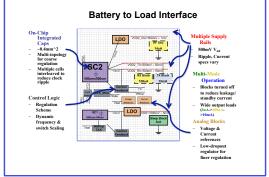
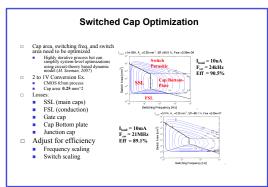

Integrated Power Management for Active RFID


Mervin John, Jan Rabaey, Seth Sanders, UC Berkeley



Rail	SC Clk	State (WkUp, TX)	Peak/Avg Load	Max Time	Ripple (mV)	CI	Eng (uC)
Vdd1	100kHz	(X,X)	4uA	.4s	5mV		1.6
Vdd2_Osc	400kHz	(1,0)	15.5/13.5 uA	4ms	lmV	20fF	0.06
Vdd2_RX	400kHz	(1,0)	120/100 uA	4ms	50mV	10pF	0.4
Vdd2 TX	20Mhz	(1,1)	8.5/7mA	10ms	50mV	20pF	70

Multiple voltage rails needed

B Wide current load range 4uA->8mA (3 orders of magnitude)

Wake-up RX and heavily duty-cycled TX

□ Reduces Eng/cycle for TX from 70uC to .7uC (1%) or .07uC (.1%) □ Standby mode consumes the most energy per cycle

Reduce leakage in standby mode by power gating other rails

Future Work

· Efficiency improvements at lower power states (sub uW)

- Wider input voltage range (100mV->10V)
- More/finer conversion ratios
- · Regulation over wide output load

Acknowledgements

- Prof. Jan Rabaey and Prof. Seth Sanders
- Colleagues from Power, Active RFID, and Demand Response
- groups
 BWRC Sponsors
- SRC/Freescale Funding