Network Agility & Network Services/Management

Demand Response/Sensor Networks

{P.A.Subrahmanyam, Bob Brodersen, John Wawrzynek, Sue Mellers, Mubaraq Mishra}

Acknowledgements

- Many thanks for their patience & support!
 - CEC/CIEE
 - Gaymond Yee
 - Ron Hofmann
 - Technical Advisory Committee (TAC)
 - Team
 - P. A. Subrahmanyam ("Subra")
 - Prof Bob Brodersen
 - Prof John Wawrzynek
 - Sue Mellers
 - Sridhar Mubaraq Mishra

BWRC/UCB Interactions

- Profs Dave Auslander, Ed Arens, Jan Rabaey, R. White, Paul Wright
- Jana van Gruenen, D. Cabric

Industry Partners

- Project overview
- Agile Radio Node
 - Broadband Capability
 - SDR/RF front end design
 - Interference Mitigation
 - Cognitive Techniques
 - Coexistence of WiMax & UWB (Ultra Wide Band)

Network Agility: Why? And Why Now?....

Context:

Demand Response & Energy Efficiency: Key to Strategic Energy Policy Imperatives

Business & Application Drivers (Demand Response & Advanced Metering Infrastructure)

Proliferation of (radio) standards for Personal, Home, Local, Metropolitan, Wide Area Networks

Need to support future proofing

Trade-offs vary: Infrastructure vs. terminals vs. consumer devices vs. sensors

 Metrics include: Life span, power, cost, flexibility, business processes...

Need for lifecycle support of service/product: provisioning, monitoring, management

MOTIVATION FOR THIS RESEARCH

Enabling Technologies

• Agile Radios: (Re)configurable, Software Defined, Cognitive

Reconfigurable systems

Networking: Hand off, Cross-layer optimization,

Service Delivery & Management, ...

What is (Network) Agility?... and Why it is important in the Demand-Response Context?

- An Agile (Radio/Gateway) Node has the ability to communicate over more than one Air Interface (Wireless Protocol/Standard).
 - E.g., Bluetooth, IEEE 802.11 b/g, IEEE 802.15.4, ...
 - Flavors of agility:
 - Protocol Agility (choose from multiple networks/protocols)
 - RF Agility (operate in more than one frequency bands)
 - Cognitive (Spectrum) agility (leverage underutilized spectrum bands)
- A Software Defined Radio node has the further ability to have its air interfaces defined and provisioned in the field.
- The use of agility in a Demand Response network can
 - Help reduce stranded assets by supporting legacy radio/sensor interfaces, (Reduce Capex)
 - "Future-proof" deployments and reducing operational costs by enabling software download of new radio functionality, and enhanced services. (Reduced Capex & Opex)
 - Provide a superior ability to manage, upgrade and provision new services.

What is Network Services & Management? ...Relevance in the DR context

- A utility (e.g., PG&E) needs to
 - Define the DR services that are offered to a customer
 - Provision the specific service that is offered to/chosen by the customer ...
- The menu of services may change over time.
 - New services/capabilities, value added features, …
- Network Services Delivery and Management involves the delivery, provisioning, deployment and ongoing management of network services.

CKI © & Confidential

Use Case Scenarios

→ System Requirements / Capabilities Needed

Use Case Scenarios: Actors & Perspectives

Traditional (Non-Agile) DR Gateway Node: Communication within the Home.

Several (Incompatible) Deployment Alternatives just during (2000-05) would have resulted in "Stranded" devices/HW/SW/..., meters, infrastructure, ...

Others standards: e.g., 2.4 GHz/5.x GHz IEEE 802.11 a/b/g/l/n/..., Z-wave, ...

Agile Radio DR Gateway/Platform Goals: Agility in External/Internal Communications within the Home. Multiple Protocols can be remotely provisioned/downloaded Dramatic reduction in "Stranded" devices/HW/SW/infrastructure, ...

Intern

CKI © & Confidential

Agile Radio DR Gateway/Platform Goals: Agility in External/Internal Communications within the Home. Multiple Protocols can be remotely provisioned/downloaded Dramatic reduction in "Stranded" devices/HW/SW/infrastructure, ...

End-to-end Reconfigurability – Leveraging Agility & Enabling a seamless experience

Use Case Scenarios: DR Perspective

- Demand-Response context (DR/AMI)
 - Agile platform should support evolution of devices/standards internal/external to the home.
 - Most likely in the gateway, AMI, …
 - And in the network infrastructure (Basestations/APs)

In particular,

- Support for 1-way & 2-way communication w/utility and ISO.
- Enable a progression from PCT to (Advanced meter + Distributed Thermostat) deployment.
- Other short-term "niche" needs may include RDS & a utilityspecific broadband mechanism (wired/wireless)

Use Case Scenarios: AMI/Home Networking Perspective

- AMI/Home Networking/DR Perspective
 - Should support emerging communication modalities, since it is long lasting infrastructure (~15-20 years)
 - Need to support (or interface with) gateway functionality for external and internal communications
 - Internal: PAN, LAN, HAN,
 - » Benefit from agile radio platform/components, capable of supporting 802.11, Zigbee, WiMax, UWB, ...
 - External: MAN, WAN
 - Should support service deployment and management

Use Case Scenarios: Operator/Service Provider Perspective

- Network Operator/Service Provider Perspective
 - Enable new services to be delivered
 - Lifecycle support for services/products
 - Network Services Management and Delivery
 - Enable remote monitoring of the devices and home network.
 - Subject to privacy and security requirements and specifications.
- Support for end-to-end reconfigurability

Use Case Scenarios: DR Specific Recommendations

- Desirable capabilities in the context of DR/AMI/HAN
 - Agile operation in the 2.4 GHz, and 900 MHz ISM bands
 - Support for protocols such as
 - ♦ WiFi
 - ◆ZigBee, ZWave, ...
 - Bluetooth,
 - UWB
 - WiMAX
 - Ability to support updates to these standards
 - Service Delivery and software download/update support

Agile Radio Platform

•As a result of our investigations related to use case scenarios, we target agility across the 900 and 2.4 GHz ISM bands. (+ 700 MHz TV bands).

Two faces of Agility: Broadband Agility & Interference Mitigation

- Agile = {Software Defined, Cognitive}
- Research focus: Two aspects of Agility
 - Capability to communicate
 - over a broad range of frequencies (transmit, receive)
 - using new air interface standards as they evolve (software downloadable, agile baseband)
 - Mitigating interference
 - While communicating over a broad range of frequencies
 - Being cognizant of interference with other modalities/frequencies
 - » E.g., UWB is an emerging indoor technology, WiMax is an emerging metropolitan LAN/broadband access technology.
 - What are the co-existence issues involved?

Agile Radio: Broadband Radio Platform. Components

- Agile Platform Components
 - Antenna (Broadband)
 - ◆ Electromagnetic Waves → Analog Electrical Signal

- RF Front End (Broadband)
 - Analog Electrical Signal (RF) → Digitized Signal in Band/Channel of interest

Baseband

- Processes digitized signal
 - Modem, Protocols, Applications, ...

Agile Radio: Broadband Radio Platform. Approach

- Antenna
 - Approaches:
 - Existing "traditional" antennas in lab (2.4 GHz, ...)
 - » Initial approach
 - Evolving to Smaller set of Broadband (small profile) antennas
 - » Emerging arena. Set of antennas identified.

- RF Front End (Broadband)
 - Approaches:
 - "Broadband" Front ends
 - » SDR Architecture with Multiple front ends in initial experiment

Baseband:

- Leverages BEE2 (Berkeley Emulation Engine 2)
 - Configurable compute platform, high speed I/O, S/W
- Eventually: Compact, low power, low cost ASIC?

Agile Radio: Cognitive Capabilities for Interference Mitigation.

- Cognitive techniques enable heterogeneous systems to coexist, and improve spectrum utilization.
- Secondary system (e.g., UWB) must be cognitive radio enabled and must sense and avoid the Primary system (e.g., WiMax)
- Cognitive Radio functionality can be incorporated into existing radios with minimal area impact (~ 1mm²)
- WiMax/UWB can function together with minimal impact on performance of either system

Summary: Network Agility

- Use-case scenarios suggest that agility can play a very useful role if leveraged in the context of Demand-response networks. Example locations:
 - Gateways, Neighborhood nodes, Communication infrastructu (PCT) stations, Access points), Advanced terminals
- Developed technologies that can Enable Network Agility, using Agile node functionality Agile leveraging
 - Software Defined Radios
 - Cognitive techniques
 - Reconfigurable Platforms
 - Service delivery

Management of DR/sensor networks

- Benefits:
 - Manage differences in attributes of components technologies deployed: half-life, reliability, business processes, costs, …

Energy

Meter

◆ E.g., Utility infrastructure (15-20 yrs) ⇔ Consumer (1/2/5 – 10+ yrs).

Utilitv

- Reduces Capital and Operating Expenditures
- Future Proofing: "Gracefully" evolution in the DR/AMI/HAN contexts.
- Enables lifecycle support for service/product: provisioning, monitoring, management
- Phased Approach: Concepts and Architecture (Phase I) → Prototype components (Phase II)

Household

Agile Radio Platform: SDR Front End Design

•As a result of our investigations related to use case scenarios, we target agility across the 900 and 2.4 GHz ISM bands. (+ 700 MHz TV bands).

Agile Radio Platform Goals: Agility in External/Internal Communications within the Home. Multiple Protocols can be remotely provisioned/downloaded Dramatic reduction in "Stranded" devices/HW/SW/infrastructure, ...

Wide Band Frontend System

Analog Hardware

- 2.45GHz band: 2.2GHz 2.7GHz Receiver
- **2.45GHz** band: **2.2GHz 2.7GHz** Transmitter
- **TV + ISM band: 600MHz 1GHz Receiver**
- **TV + ISM band: 600MHz 1GHz Transmitter**

2.45GHz +/-250MHz Receiver

Notes: All part nos: Minicircuits unless otherwise indicated

CKI © & Confidential

2.45GHz +/-250MHz Receiver with iADC and iBOB

IBOB Interface Board Xilinx XC2VP50

100 M

ADC Board

Analog Receiver

Digital Hardware

- iBOB
 - Interface board with preprocessing capability
 - 2 XAUI 20 GBits per sec full duplex
 - 1 Xilinx 2VP50
- ADC
 - Dual ADC with 8-bit resolution,
 - IGsps Sampling Rate, 2Gsps Interleaved mode
- DAC
 - Full bandwidth of DAC: 550MHz
 - Sample rate 1.2Gsps
 - 10 bit resolution
- BEE2
 - 5 FPGAs
 - 18 XAUI ports (10Gbit)
 - #mips

- Simulink
 - A graphical hardware description language used to configure the FPGA to receive data from the ADC and forward the data to BEE2 using the XAUI interface
 - Simulink and Verilog libraries used to program the FPGA of the iBOB or BEE2
- BORPH system control
 - Simplifies the interface to using the BEE2 boards
 - Mixed hardware/software inter-process communication with BORPH

Cognitive Radio Technology for UWB/WiMax coexistence

Mubaraq Mishra Berkeley Wireless Research Center Agile Radio DR Gateway/Platform Goals: Agility in External/Internal Communications within the Home. Multiple Protocols can be remotely provisioned/downloaded Dramatic reduction in "Stranded" devices/HW/SW/infrastructure, ...

Interference to WiMax?

- WiMax and UWB on Agile DR Node
 - Interference can be managed internally
- UWB devices on different sensors/laptops in proximity to DR Node
 - Interference is a problem

Cognitive Radio functionality to enable UWB/WiMax Coexistence

- Definition: "A cognitive radio (CR) is a radio that can change its transmitter parameters based on interaction with the environment in which is operates" - [FCC NPRM - 03-322]
- Cognitive radio properties for UWB
 - Sensing: RF technology that "listens" to huge swaths of spectrum
 - UWB can listen to entire 1.5GHz band
 - Cognition: Ability to identify primary users
 - Can distinguish WiMax from spurious tones
 - Self-modification capability : Ability to change power levels, frequency ranges, modulation parameters to best use white spaces and minimize interference to primary users
 - Avoid/Notch out frequency bands where WiMax is detected

Sensing and Cognition

Self Modification Capability

Introducing a spectral notch of 28dB to protect WiMax

On Chip* Sensing, Cognition and Avoidance

UWB Radios with the BEE2

UWB with BEE2 for multi-radio experiments

Coexistence: Conclusions

- In the future heterogeneous systems will coexist on the same frequency
 - Cognitive Radios enable heterogeneous systems to coexist improve spectrum utilization – DR nodes need to contain such technology
- Cognitive Radio functionality can be incorporated into existing radios with minimal area impact (~ 1mm²)
- System coexistence tests at Intel show that WiMax/UWB can function together with minimal impact on performance of either system

Summary: Network Agility

- Use-case scenarios suggest that agility can play a very useful role if leveraged in the context of Demand-response networks. Example locations:
 - Gateways, Neighborhood nodes, Communication infrastructu (PCT) stations, Access points), Advanced terminals
- Developed technologies that can Enable Network Agility, using Agile node functionality Agile leveraging
 - Software Defined Radios
 - Cognitive techniques
 - Reconfigurable Platforms
 - Service delivery

Management of DR/sensor networks

- Benefits:
 - Manage differences in attributes of components technologies deployed: half-life, reliability, business processes, costs, …

Energy

Meter

◆ E.g., Utility infrastructure (15-20 yrs) ⇔ Consumer (1/2/5 – 10+ yrs).

Utilitv

- Reduces Capital and Operating Expenditures
- Future Proofing: "Gracefully" evolution in the DR/AMI/HAN contexts.
- Enables lifecycle support for service/product: provisioning, monitoring, management
- Phased Approach: Concepts and Architecture (Phase I) → Prototype components (Phase II)

Household

