
i 

 

 
 

FINAL PROJECT REPORT 
 

OSCILLATION DETECTION AND ANALYSIS 
 
 
 

Prepared for CIEE By: 
 

Pacific Northwest National Laboratory 

 
 
 
 

Project Manager: Ning Zhou 
Authors: Ning Zhou, Zhenyu Huang, Francis Tuffner, Shuanshaung Jin, Jenglung 

Lin, Matthew Hauer 
Date: August, 2010  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A CIEE Report 
 



ii 

 

ACKNOWLEDGEMENTS 
The project entitled “Oscillation Detection and Analysis” is funded by the California Energy 
Commission’s Public Interest Energy Research (PIER) Program, through the California Institute 
of Energy and Environment. The preparation of this report was conducted with support from 
the California Energy Commission’s PIER Program and support from the Transmission 
Reliability Program of the Department of Energy’s Office of Electricity Delivery and Energy 
Reliability. 

The authors would like to thank Mr. Merwin Brown, Mr. Jim Cole and Mr. Larry Miller with the 
California Institute for Energy and Environment, Dr. John Hauer with the Pacific Northwest 
National Laboratory, James (Jim) Burns with the Bonneville Power Administration, Jamie 
Patterson with the California Energy Commission, and Enamul Haq, Kristen Lacey, Chetty 
Mamandur, Jim McIntosh, Jun Wu with California Independent System Operator for their help 
and assistance with this project. 

Project support provided by Sue Arey, Meredith Willingham, and Kim Chamberlin, all with the 
Pacific Northwest National Laboratory, is gratefully acknowledged. 

Technical discussions with the Technical Advisory Committee have been instrumental to the 
success of the research and the preparation of this report. The authors are very grateful of their 
dedicated support and insightful comments. The Technical Advisory Committee for the project 
“Oscillation Detection and Analysis” consists of the following academic and industry experts: 

• Hani Alarian, with California Independent System Operator 
• Jeff Dagle, Pacific Northwest National Laboratory 
• Soumen Ghosh, formerly with California Independent System Operator 
• Dmitry Kosterev, Bonneville Power Administration 
• William Mittelstadt, Bonneville Power Administration (retired) 
• Phil Overholt, Department of Energy 
• Manu Parashar, formerly with the Electric Power Group 
• John Pierre, University of Wyoming 
• Dan Trudnowski, Montana Tech of the University of Montana 
• Matthew Varghese, California Independent System Operator 

 

DISCLAIMER 

This draft report was prepared as the result of work sponsored by the California Energy 
Commission. It does not necessarily represent the views of the Energy Commission, its 
employees or the State of California. The Energy Commission, the State of California, its 
employees, contractors and subcontractors make no warrant, express or implied, and assume no 
legal liability for the information in this report; nor does any party represent that the uses of this 
information will not infringe upon privately owned rights. This report has not been approved 
or disapproved by the California Energy Commission nor has the California Energy 
Commission passed upon the accuracy or adequacy of the information in this report. 



iii 



iv 

PREFACE 
The California Energy Commission Public Interest Energy Research (PIER) Program supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 
projects to benefit California. 

The PIER Program strives to conduct the most promising public interest energy research by 
partnering with RD&D entities, including individuals, businesses, utilities, and public or 
private research institutions. 

PIER funding efforts are focused on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Energy Innovations Small Grants 

• Energy-Related Environmental Research 

• Energy Systems Integration 

• Environmentally Preferred Advanced Generation 

• Industrial/Agricultural/Water End-Use Energy Efficiency 

• Renewable Energy Technologies 

• Transportation 
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conducted by the Pacific Northwest National Laboratory. The information from this project 
contributes to PIER’s Energy Systems Integration program area. 
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ABSTRACT 
Small signal stability problems are one of the major threats to the grid stability and reliability in 
California and the western United States. The problems result in power oscillations, lower the 
grid operation efficiency, and may even lead to grid breakup and large scale power outages.  
Accurate and timely information about the oscillation modes can help optimize stability margin 
settings, as well as give early warnings for unstable modes to operate a grid at its full capacity 
while staying within the stability boundary. Prony analysis has been successfully applied 
offline on oscillation data to estimate oscillation modes of a power system using phasor 
measurement unit (PMU) data. To monitor oscillation modes in real time, this report develops a 
recursive algorithm for implementing Prony analysis and proposes an oscillation detection 
method to automatically detect the onset of oscillations. As a result, Prony analysis can be 
properly and timely applied on the oscillation data. Thus, the mode estimation is performed 
reliably and timely. The performance of the proposed oscillation detection and analysis method 
is evaluated using Monte Carlo method based on a 17-machine system model, and is shown to 
be able to properly identify the oscillation data for real-time application of Prony analysis.  The 
proposed method is also validated with field measured PMU data of various system events on 
the Western Electricity Coordinating Council power grid. The project has also implemented and 
integrated the algorithm into a Graphic User Interface to monitor oscillation modes in real time. 

 

 

Keywords: least squares methods, power system identification, power system measurements, 
phasor measurement, power system monitoring, power system parameter estimation, power 
system stability, Prony identification, recursive estimation 
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EXECUTIVE SUMMARY 
Small signal stability problems can cause system oscillations, which are one of the major threats 
to grid stability and reliability in California and the western United States. An unstable 
oscillatory mode can cause large-amplitude oscillations and may result in system breakup and 
large-scale blackouts. There have been several incidents of system-wide oscillations worldwide. 
Of them, the most notable is the August 10, 1996 western system breakup produced by 
undamped system-wide oscillations. 

In real time operation, it is important to get accurate and timely information about system 
oscillations to enable operator actions and prevent failures if oscillations occur. Additionally, 
power system planning establishes the dynamic stability margin to avoid system breakups 
caused by oscillations, which puts limits on the power transfer capabilities. Accurate and timely 
information about the oscillations can help optimize these transfer margin settings so that a grid 
operates at its full capacity, while staying within the stability boundary.  

In power systems, a small-signal oscillation is the result of poor electromechanical damping. 
Considerable understanding and literature have been developed on the small-signal stability 
problem over the past 50+ years. These studies mainly utilized component-based models and 
eigenvalue analysis of their characteristic matrix. However, its practical feasibility is greatly 
limited because power system models are often inadequate in describing real-time operating 
conditions.  

Therefore, significant efforts have been devoted in the past 20 years to monitoring system 
oscillatory behaviors from real-time measurements. The deployment of phasor measurement 
units (PMU) provides high-precision time-synchronized data needed for estimating oscillation 
modes. Measurement-based modal analysis, also known as ModeMeter, uses real-time phasor 
measurements to estimate system oscillation modes and their damping. Low damping indicates 
potential system stability issues, which should lead to the issuance of oscillation alarms when 
the power system is lightly damped. A good oscillation alarm tool can provide time for 
operators to take remedial reaction and reduce the probability of a system breakup due to a 
light damping condition. To facilitate ModeMeter development and evaluation, the Western 
Electricity Coordinating Council (WECC) has conducted a number of system tests in the past 
decade. The tests include large signal tests through the insertion of the 1,400 MW Chief Joseph 
brake resistance, mid-level signal tests through ±125 MW modulation of Pacific DC Intertie 
(PDCI) real power set values, and noise probing tests through ±10-20 MW modulation of the 
PDCI power. Recently, the system tests have advanced towards a weekly basis for future 
continuous tests and real-time oscillation monitoring. Real-time oscillation monitoring requires 
ModeMeter algorithms to have the capability to work with various kinds of measurements: 
oscillation data (ringdown signals), noise probing data, and ambient data.  

Several measurement-based modal analysis algorithms have been developed. They include 
Prony analysis, Regularized Robust Recursive Least Square (R3LS) algorithm, the Yule-Walker 
algorithm, the Yule-Walker Spectrum algorithm, and the N4SID algorithm. Each is effective for 
certain situations, but not as effective for some other situations. For example, the traditional 
Prony analysis works well for oscillation data, but not for ambient data.  However, Yule-Walker 
is designed for ambient data only. Even in an algorithm that works for both oscillation data and 
ambient data, such as R3LS, latency results from the time window used in the algorithm is an 
issue in timely estimation of oscillation modes. For ambient data, the time window needs to be 
longer to accumulate information for a reasonably accurate estimation.  For oscillation data, the 
time window can be significantly shorter, so the latency in estimation can be much less. In 
addition, adding a known input signal, such as noise probing signals, can increase the 
knowledge of system oscillatory properties and thus improve the quality of mode estimation. 
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System situations change over time. Oscillations can occur at any time, and probing signals can 
be added for a certain time-period and then removed. All these observations point to the need 
to add intelligence to ModeMeter applications. That is, a ModeMeter tool needs to adaptively 
select different algorithms and adjust parameters for various situations.  

This project aims to develop systematic approaches for algorithm selection and parameter 
adjustment. The very first step is to detect occurrence of oscillations, so the algorithm and 
parameters can be adjusted accordingly. The proposed oscillation detection approach is based 
on the extended signal-to-noise ratio of measurements. Intuitively, ambient data would have a 
low signal-to-noise ratio, while oscillation data would have a high signal-to-noise ratio. Some 
additional metrics are also introduced to further reduce missing detection and false alarms. 
Upon detection of oscillation data, the ModeMeter algorithm can be changed to accommodate 
the higher density of information in the signal.  The ModeMeter may use Prony analysis, or the 
time window of an algorithm can be greatly shortened, so the latency is significantly reduced, 
and the responsiveness of mode estimation is improved.    

This report describes such an oscillation detection algorithm. Combined with a recursive Prony 
algorithm, a tool has been implemented for oscillation data detection and analysis. A 17-
machine model provides simulation data used to show the statistical performance of the 
algorithm. Field measured data from Wide Area Measurement System (WAMS) of the Western 
Electricity Coordinating Council (WECC) system is used to validate the proposed algorithm. 
The results demonstrate the effectiveness of the proposed algorithm. Based on the detection, 
Prony analysis can be applied to estimate oscillation mode timely and accurately. The method 
has been implemented and integrated into a graphic user interface to monitor oscillation modes 
in real-time. 
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CHAPTER 1: 
Introduction and Background 
Introduction 
Small signal stability problems are one of the major threats to grid stability and reliability in 
California and the western U.S. power grid. An unstable oscillatory mode can cause large-
amplitude oscillations and may result in system breakups and large-scale blackouts. There have 
been several incidents of system-wide oscillations worldwide [Pal and Chaudhuri, 2005]. Of 
them, the most notable is the August 10, 1996 western system breakup produced by undamped 
system wide oscillations [Kosterev et al., 1999]. In real-time operation, it is important to get 
accurate and timely information about system oscillations to enable operator actions and 
prevent failures if oscillations occur. Power system planning establishes the dynamic stability 
margin to avoid system breakups caused by oscillations, which puts limits on the power 
transfer capabilities. Accurate and timely information about the oscillations can help optimize 
these margin settings so that a grid can be operated at its full capacity, while staying within the 
stability boundary.  

To provide timely information about grid oscillations, extensive studies have been carried out 
to identify power system modes. Generally, there are two basic approaches for estimating 
power system modes:  model-based methods and measurement-based methods. With the 
model-based method, a set of nonlinear differential equations describe the system. The 
equations are linearized about an operating point. The power system modes are then obtained 
through eigenvalue analysis of the linearized model [Chow and Cheung, 1992]. On the other 
hand, for a measurement-based method, a linear model is estimated from direct system 
measurements [Hauer et al., 1990]. 

An important aspect to remember is that for a large, complex power system, building a system 
model is not trivial. For example, [Kosterev et al., 1999] reports that the model was not adequate 
for simulating the Western Electricity Coordinating Council (WECC) reaction right before the 
breakup of August 10, 1996.  The simulation data from the initial model did not match the field 
measurement data. Simulation and measurement results only reached similar values after 
extensive efforts were spent to calibrate the model. In contrast, a measurement-based approach 
usually requires significantly less efforts. Measurement-based methods can update the mode 
estimation based on real-time streaming of measurement data. Thus, measurement-based 
methods have certain advantages over model-based methods in monitoring power system 
modes in real time. 

There exist several measurement-based small signal stability analysis algorithms [Hauer et al., 
1990; Liu et al., 2007; Liu and Vekatasubramanian, 2008; Pierre et al., 1997; Kamwa et al., 1996; 
Messina and Vittal, 2006; Trudnowski et al., 2008; Sanchez-Gasca and Chow, 1999; Zhou et al., 
2006, 2007, 2008, 2009]. Performance studies of the existing small signal stability analysis 
algorithms have been carried out, but there are no comprehensive comparisons of all the 
algorithms. One reason for the lack of this comparison is algorithm performance is likely to be 
situation-dependent. One algorithm would perform better under some circumstances, while 
others may perform better in other circumstances. Ultimately, it is conjectured that the right 
combination of algorithms needs to be used to support real-time power grid operation [Liu et 
al., 2007]. Applying a mode analysis algorithm on a data set that is not suitable for that 
particular algorithm may result in degraded performance, and even false or missing alarm 
conditions. 

To achieve desired performance and reduce false or missing alarms, measurement data should 
be classified into different categories to be sure that a proper selection of a mode identification 
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algorithm. In general, field measurement data fits two classifications: typical and non-typical 
data. Typical data is the data that carries system mode information and is describable by the 
model structure used by an identification algorithm. In contrast, non-typical data does not carry 
information about system modes and cannot be described by a general linear model.  Figure 1 
shows a sample set of phasor measurement data with different types of data highlighted. 

Figure 1: Power System Data Examples 

 
Different data types of a typical power signal.  This figure represents phase angle 
data between two buses on the power system. 
Source: Pacific Northwest National Laboratory 

Commonly encountered non-typical data points include, but are not limited to, missing data 
and outliers. Missing data are often dropped data points, which may result from temporary 
communication and measurement device failures. Outliers are values that significantly deviate 
from normal values. Outliers may result from a serious disturbance and/or sensor failure. In 
general, data that cannot be described by the adopted model structure is considered non-typical 
data. For example, transient data right before ringdown signals is also considered non-typical, 
namely because it cannot be described by a linear prediction model. 

Typical data can include, but is not limited to, ambient data, ringdown oscillations, and probing 
data. A power system produces ambient data when it is working under an equilibrium 
condition, and the major disturbance is from small-amplitude random load changes [Pierre et 
al., 1997]. Ringdown oscillation data occurs after large disturbances, such as a line tripping out 
of service, which result in observable oscillations [Hauer et al., 1990]. Probing data represents 
the situation when a low-level pseudo-random noise is intentionally injected into the system to 
test the system performance [Zhou et al., 2006].   

Note that these three types of data carry different levels of mode information density. As shown 
in [Zhou et al., 2008], the ringdown oscillation data carries the highest level of information 
density. The mode estimation converges fast to the true values. As such, it is valuable to identify 
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oscillation data from other signals. An identified ringdown oscillation can help to select the 
right algorithm, reduce the mode estimation time, and provide an indication of the disturbance 
events.  

Figure 2 shows a flow chart for integrating the ringdown oscillation analysis into a mode 
analysis study. After obtaining phasor measurement unit (PMU) data, the first step is to classify 
the data into typical and non-typical data according to a prediction error model [Zhou et al., 
2007]. Then, check the typical data for the presence of a ringdown oscillation. Upon detection of 
a ringdown oscillation, the proposed recursive Prony analysis can be applied for mode 
identification. If the features of the data fit assumptions of another algorithm (e.g., ambient 
assumption), the corresponding algorithm will be applied. The mode information is displayed 
after an identified model passes model validation [Ljung, 1999]. 

Figure 2: Flowchart of Modal Analysis of Power System Data 

 
The flowchart outlines the logic used by the oscillation detector.  If non-typical data for the 
algorithm, the data is handled via a different analysis means. 
Source: Pacific Northwest National Laboratory 

Background 
As mentioned earlier, grid oscillations are closely related to different modes of interest in the 
power system.  If the entire power system were modeled as a transfer function, the 
denominator, or the poles of the system, represent the modes.  These modes are often the result 
of generator controls from a wide geographical distribution interacting with each other.  If these 
interactions become unstable, the generator pairs associated with this interaction will swing 
against one another in a stronger and stronger fashion until the system collapses, or suitable 
mitigation control engages. 
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Because the poles of a system represent the modes, it is also useful to think of them as the 
natural resonances in the system.  One example of system resonance is a piano tuning fork.  
When excited by an event (in this case, striking the tuning fork), the natural resonances of the 
system become apparent.  In the case of the tuning fork, a distinct, decaying pitch can be heard 
as the system returns to its steady state.  The power system is very similar in this respect.  If 
excited by an event such as a line tripping, the system will resonate at these modal frequencies.  
If the system is stable, these oscillations will slowly damp and the system will return to an 
equilibrium condition.  However, if the system is unstable, as it was in the WECC 1996 case 
presented in Figure 3, these oscillations will grow until corrected, or system damage will occur. 

Figure 3: Measured Data of 1996 WSCC Breakup 

 
Measured power on the California Oregon Intertie for August 10, 1996   
Source: Pacific Northwest National Laboratory 

Modes of oscillation typically have two parameters of interest.  These parameters are the 
frequency and damping ratio of the mode.  Keeping with the tuning fork example, the 
frequency of the mode is the particular pitch at which it resonates.  The damping ratio is a 
measure of how fast the tone will fade away if the tuning fork is no longer excited.  If a mode 
has a negative damping ratio, the amplitudes of the oscillation will keep growing. 

In terms of the power system, if an event occurs to induce such a resonance on the electrical 
grid, operators quickly need to know the new conditions of the system.  If the resultant 
transient will sustain itself, or if the system is closer to an unstable operating point, remedial 
actions must be taken.  For this reason, accurate and timely estimation of oscillation modes is 
desired.  With knowledge of a growing instability or a change in stability margins, operators 
can adjust the power system to prevent complete failure of the system.  Utilizing the oscillation 
detection algorithm presented, modal estimates from ringdown events can be quickly identified 
and estimated, providing the necessary information to operators on a timeline faster than a 
longer, ambient data estimation method. 
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CHAPTER 2: 
Algorithm Description 
To reduce the rates of false and missing alarms, it is important to make sure that the right 
algorithm is applied to a right data set. For example, upon detection of a ringdown oscillation, a 
Prony analysis method can be applied [Hauer et al., 1990].  This chapter discusses a method for 
identifying ringdown signal from measurement data. 

Review of Prony Analysis 
As discussed in [Hauer et al., 1990], Prony analysis can be used to determine the system modes 
from a ringdown signal. If a linear state space model can describe the system, the homogeneous 
responses of the system to a disturbance are a sum of exponentially damped sinusoidal signals. 
The response, called a ringdown signal, can be described by 

 (2-1) 

where y(t) is the measurement data at time t. Here λi stands for the ith eigenvalue, which is a 
complex number. ci stands for the amplitude of ith mode, which is also a complex number.   The 
symbol n is the total number of eigenvalues. At sample time tk=k�Δt, a sample discrete 
ringdown signal y[k] can be described as 

 (2-2) 

Here Δt is the sampling interval. To determine the λi, write y[k] in a matrix format as 

 (2-3) 

Note that the most right matrix about zi’s in equation (2-3) is a Vandermonde matrix.  Thus, 
there exists a set of indexes aj’s, defined as 

 (2-4) 
or in the matrix form as 
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(2-5) 

It can be derived from equations (2-3) and (2-5) that 

 (2-6) 

 (2-7) 

Note that only the measurements of y[k]’s can be obtained. In the measurement data , there 
is measurement noise and process noise, in addition to the multiple exponential terms in 
equation (2-2).  Thus, the equation for measurement data with a noise term is 

.

 (2-8) 

To increase estimation accuracy, the number of the samples in the data, N, is usually chosen to 
be greater than 2*n to form a set of over-determined equations in equation (2-8). A least-squares 
(LS) algorithm is applied to solve the equations. Also, to suppress noise, the model order in 
equation (2-8) is usually chosen to be higher than the number damped sinusoidal signals. 

The aj’s can be found by solving equation (2-8) in the least-squares sense. The estimates of zi, 
denoted as , can be estimated as the roots of the polynomial of 

.
 (2-9) 

According to [Pierre et al., 1997], the estimated eigenvalues, or modes, of the system are 

 (2-10) 
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The frequency and damping ratio of the modes are 

 (2-11) 

 
(2-12) 

Once the eigenvalues λi and zi are identified, the time domain ringdown signal can be 
reconstructed using the following procedure. According to equation (2-3), the following can be 
used to estimate oscillation amplitude , denoted as : 

 (2-13) 

Note that the equation (2-13) is an over-determined equation, when N > n.  An LS algorithm can 
now be applied to estimate .  The time domain ringdown signal can be reconstructed as 

 (2-14) 

Note that the reconstructed ringdown signal  usually does not perfectly match the 
measurement . The unmatched portion is noise in the estimate.  This noise level is 
quantified through the signal-to-noise ratio (SNR).  The SNR value provides a means to check 
the fit of the two signals. 

With the reconstructed ringdown signal, the posterior estimation noise is 

 (2-15) 
The SNR value is, therefore, 

 (2-16) 

A large SNR indicates a good fit for the underlying model and the ringdown assumption may 
hold. On the other hand, a small SNR indicates that the fit is not good and the ringdown 
assumption may not hold. 
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Block Prony Algorithm 
As discussed in [Zhou et al., 2007] and [Pierre and Zhou, 2007], a robust and recursive 
implementation can help improve the implementation efficiency and robustness against 
outliers. To facilitate recursive implementation, the Prony algorithm is first rewritten in a block-
processing format in this section. In the block Prony algorithm, the equations are formulated in 
a matrix or sub-matrix (block) format in a straightforward way. No special considerations were 
given to computational efficiency and memory usage.  To implement the proposed oscillation 
algorithm recursively and robustly, the following procedure is implemented.  

To simplify the notation, equation (2-8) is rewritten in a matrix format as 

 (2-17) 
where k is the starting time when the Prony analysis can be applied. Adjusting equation (2-8) 
into equation (2-17) requires simplifying the notation such that 

 (2-18) 

 (2-19) 

 (2-20) 

 (2-21) 

 (2-22) 
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Note that here n is the order of the Prony model, and N-n is the number of equations.  Thus, the 
objective function of the least-squares solution is 

 (2-23) 

where λ is the forgetting factor, which is a positive number slightly smaller or equal to 1. 

Writing the objective function in matrix format yields 

 (2-24) 

where 

 (2-25) 

is a diagonal matrix.  Thus, the least-square solution is 

.
 (2-26) 

The least square solution can be found by setting the derivative of the objective function to 0, as 
follows: 

 (2-27) 

Thus, the block solution becomes 

 (2-28) 

where 

 (2-29) 

 

(2-30) 
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Recursive Prony Analysis 
To improve the implementation efficiency, this section derives a recursive solution.  The 
recursive solution requires fixed storage and limited calculation time. 

According to equations (2-29) and (2-30),  

 (2-31) 

 
(2-32) 

Note that 

 (2-33) 

 
(2-34) 

According to equations (2-33) and (2-34), equation (2-28) can be written as 

 (2-35a) 

where 
 (2-35b) 
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is the priori prediction noise. This priori prediction noise is the difference between the 
measurement at k+N-1 and the prediction based on the past ringdown model. Note that the past 
ringdown model is built based on the measurement taken before k+N-1 (not including k+N-1).  
The prediction noise serves as an indication of how well the current ringdown model describes 
the next available data. 

Note that a recursive algorithm is formed by equations (2-33), (2-34), and (2-35), because the 
current estimate can be calculated by updating the previous estimate using current 
measurements.  The storage requirements are all fixed. 

Improved Recursive Prony Analysis 
Note that equations (2-33), (2-34) and (2-35) require the calculation of inverse matrix, , 
which is a time-consuming computation. The calculation efficiency improves by using matrix 
inversion lemma from [Ljung, 1999] given as 

 (2-36) 
to circumvent the matrix inverse calculation.  To facilitate notation, define: 

 (2-37) 

Based on this choice, equation (2-35) becomes 

 (2-38) 

According to equation (2-37),  

 (2-39) 
Now apply the matrix inversion lemma two times. 

1) Matrix inversion lemma #1 

 (2-40) 

 
(2-41) 

where 

 
(2-42) 

Define 

 (2-43) 
Then 

 (2-44) 

2) Matrix inversion lemma #2 
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 (2-45) 

With the derivation complete, the improved recursive Prony for each time step, k, follow the 
following sequence:  

1. use equation (2-45) to calculate Q[k], 

2. use equation (2-44) to calculate P[k], 

3. and use equation (2-38) to calculate . 

Method for Detection of Ringdown Signals 
The applicability of the mode identification algorithms (including Prony analysis) rely heavily 
on the proper use of algorithms. Identification algorithms can provide dependable mode 
information only when applied properly and on the right signal types. Prony analysis is known 
to be applicable to ringdown data. Because of the rich modal information contained in 
ringdown data, the time window of the data needed for estimation is significantly shorter than 
that for ambient data. Thus, the latency in estimation can be reduced, and mode estimates can 
be updated more timely. Therefore, it is highly desirable to automate Prony analysis on 
identified ringdown data. Proper automatic Prony analysis relies on the detection of 
oscillations, and thus ringdown data. This section introduces three indices for this purpose: 
relative noise level, measurement energy, and prediction correction.  

The relative noise level is the percentage of noise with respect to total measurement energy. It is 
defined as 

 (2-46) 

where  is the estimation noise from equation (2-15) and  is the measurement signal of 
equation (2-14). 

As defined in equation (2-15), the posteriori noise is the measurement component that is 
unexplained by the identified ringdown model. Thus, a lower relative noise level indicates a 
good fit between model and data, and the ringdown assumption may hold. On the other hand, 
a higher relative noise level indicates that the fit is not so good, and the ringdown assumption is 
unlikely to hold. 

For the typical power system application, a sudden disturbance, such as a brake insertion, line 
trip, or generator trip, produces ringdown data.  Ringdown data normally carries more energy 
than ambient data.  During the period of a disturbance, the measurement energy, given by (2-
47), increases. Growing signal energy may indicate the imminence of a ringdown disturbance. 
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 (2-47) 

Another useful metric for detecting proper algorithm application is the prediction correction, 
defined as 

 (2-48) 
The prediction correction is the difference between priori prediction noise, as in (2-15), and 
posteriori prediction noise, as in (2-35b). This describes the adjustment made after a new data 
point is included. A smaller prediction correction term indicates consistency between the 
current model and the updated model. A large prediction correction indicates significant 
changes in model after a new measurement data point is included. Except abrupt changes, 
which result in ringdown data, power system operating points slowly migrate from one to 
another. Thus, it is reasonable to assume that the modes do not change significantly during a 
ringdown procedure. Therefore, ringdown data should produce a smaller prediction correction 
term. 

For reliably detecting ringdown data, the following method is proposed:  

1) Arm the ringdown detector, when: 

• the relative noise level is lower than a preselected threshold (the threshold is selected 
to be mean minus three standard deviations for the ambient data in this report); 

• the measurement energy level exceeds a preselected threshold (the threshold is 
selected to be mean plus 10 standard deviations for the ambient data in this report); 

• and the prediction correction is lower than a preselected threshold (the threshold is 
selected to be mean plus 10 standard deviations for the ambient data in this report). 

2) If the ringdown detector is armed, set the start of ringdown data (i.e., the onset of 
oscillations) after the relative noise level reaches a local minimum point. 

3) If the start of ringdown data has been set, set end of the ringdown data when the relative 
noise level exceeds a preselected threshold (the threshold is selected to be mean minus 
three standard deviations for the ambient data in this report). 

Note that the recursive Prony algorithm executes continuously on all the measurement data. 
However, only when the ringdown data is detected utilizing the above criteria, are modes 
estimated from Prony analysis trusted and reported to support grid operation and other 
decision making.  The threshold values can serve as a good rule of thumb for implementing the 
algorithm. They may need slight adjustment for different configurations or operating conditions 
of the power system to reduce the rate of false alarms and missed alarms. 
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CHAPTER 3: 
Results of Simulation Case Studies 
Simulation studies are used to evaluate the performance of the proposed recursive Prony 
analysis algorithm and ringdown oscillation detection method.  A 17-machine model (shown in 
Figure 4) generates simulation data for testing the performance of the proposed method. Many 
studies used this model to evaluate performance of mode identification algorithms. A detailed 
description of the model is in [Trudnowski et al., 2006]. 

Figure 4: One-line Diagram of 17-Machine System 

 
One line diagram representing the 17-machine simulation system.  The 17-machine system is 
a very rough approximate of the western U.S. power grid. 
Source: [Trudnowski et al., 2006] 

To conduct long-term simulations (several minutes), the 17-machine model is linearized into a 
linear model of order 203 using the MATLAB Power System Toolbox (PST) [Chow and Cheung, 
1992]. Table 1 lists the dominant inter-area modes of this model. The mode at 0.422 Hz and 
3.63% damping is selected for evaluating the performance of recursive Prony algorithm.  To 



17 

generate the ambient data, low-pass filtered Gaussian white noise sequences simulate small real 
and reactive load changes at all the load buses.  A half-second insertion of a 1400 MegaWatt 
(MW) brake at bus 35 produces ringdown data for analysis. The sampling rate of simulation 
data is set to be 30 samples per second to simulate PMU measurement from the WECC Wide 
Area Measurement System (WAMS). The sampling rate of the data set is subsequently reduced 
to 5 samples per second to focus on low frequency mode studies [Zhou et al., 2007]. 

Table 1: Inter-area Modes of 17-machine System 

Freq (Hz) Damp (%) Mode Interaction 

0.318 10.74 North	  half vs. Southern	  half 

0.422 3.63 North half vs. Southern half + bus 45 

0.635 3.94 bus	  18 vs. Rest	  of	  the	  system 

0.673 7.63 buses	  20,	  21 vs. bus 24 

Source: [Trudnowski et al., 2006] 

To examine the statistical performance, a Monte Carlo method is used. The Monte Carlo 
method uses repeated random sampling to generate a group of data sets for mode estimation 
[Wikipedia, 2009]. It is used in the report as follows: 

1) Generate M sets of random data to simulate the random load changes. In this report, M 
is set to be 100. Each set of data is of 120 seconds in length. 

2) Apply each set of random data to the 17-machine model to simulate random load 
changes. 

3) At the 50-second mark, apply the half-second brake insertion of 1400 MW at bus 35 to 
generate ringdown data. Apply the proposed ringdown detection method to detect the 
insertion of the brake (i.e., the start of the oscillation). 

4) Apply the proposed recursive Prony analysis to identify the power system modes.  

The case studies utilized the power flow on the line from bus 18 to bus 30. The objective is to see 
if the algorithm can accurately detect the brake insertion, and how quickly and accurately the 
recursive Prony analysis method can estimate the oscillation modes. A time plot of one output 
of the 100 Monte Carlo simulations is shown in Figure 5 (the DC component has been removed). 
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Figure 5: Single 17-Machine Simulation Output of Ambient and Ringdown Data 

 
Single simulation output of Monte Carlo simulations using 17-machine model.  Output 
represents both ambient and ringdown data types from the model. 
Source: Pacific Northwest National Laboratory 

The identification parameters for the recursive Prony algorithm are set up as n=20, N=80, and 
λ=1.  Other parameters are set as  and  times an appropriately sized identity 
matrix. Note that with selected parameters, the Prony analysis window is set to 16 seconds. 
Thus, the Prony analysis results begin 16 seconds after the ringdown starts. In addition, due to 
the 16-second time window of Prony analysis, the ringdown data needs to accumulate for 16 
seconds before the proper application of Prony analysis. For this simulation study, it means that 
the Prony analysis should be applicable at about 50.5+16=66.5 seconds, as shown in Figure 5, 
where 50.5 seconds represents the time the 1400 MW brake is released from the system. 

To evaluate the performance of the proposed ringdown data detection method, the three indices 
(relative noise level, measurement energy, and prediction correction) are calculated for each of 
the 100 data sets, and results are summarized in Figure 6 through Figure 8.  Note that the 
ringdown detection method is trying to detect the proper interval to apply Prony analysis. As 
indicated previously, with a 16-second analysis window, this should be around 66.5 seconds. 
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Figure 6: Relative Noise Level for 100 Monte Carlo Simulations 

 
Relative noise level for 100 Monte Carlo simulations.  The red line represents the 
threshold of detection for which a signal would become an oscillation candidate. 
Source: Pacific Northwest National Laboratory 

Figure 7: Measurement Energy for 100 Monte Carlo Simulations 

 
Measurement energy for 100 Monte Carlo simulations.  The red line represents the 
threshold of detection for which a signal would become an oscillation candidate. 
Source: Pacific Northwest National Laboratory 
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Figure 8: Prediction Correction for 100 Monte Carlo Simulations 

 
Prediction correction value for 100 Monte Carlo simulations.  The red line again 
represents the threshold of detection for which a signal becomes an oscillation 
candidate. 
Source: Pacific Northwest National Laboratory 

In Figure 6, the relative noise levels behave consistently during the ringdown data for 100 sets 
of data. It has one peak and two valleys. The first valley is due to the over-fit on the initial large 
transient of the brake insertion. The second valley is where the ringdown signal detection 
should occur. In contrast, the relative noise levels vary significantly for ambient data. Due to the 
large variance of the relative noise level during the ambient data, detecting ringdown data only 
based on the relative noise level may result in false detection scenarios. 

Figure 7 shows that the measurement energy for ringdown data is significantly larger than the 
ambient data portions of the simulations. Thus, it is useful for detecting ringdown data. Note 
that detecting ringdown data only based on the measurement energy may also result in false 
detection.  This is due to large amplitude disturbances leading to large measurement energy. 

Figure 8 shows that the prediction correction has a peak when the relative noise level in Figure 
6 has the first valley. It shows that during this period, even though the relative noise level is 
low, mode estimation is not consistent. The adjustment after taking in a new data point is 
significant. Thus, it is not proper to apply Prony during this period. By combining Figure 8 with 
Figure 6, the first valley of the Figure 8 does not fit the ringdown data criteria. 

To assist comparison, Figure 9 shows the three indices normalized and combined into one 
figure. The three indices show distinguishable behaviors during the ringdown data.  The 
combination of all three indices results in a reliable method for the detection of ringdown data. 
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Figure 9: Normalized Indices for 100 Monte Carlo Simulations 

 
Normalized indices of detection for 100 Monte Carlo simulations.  All three 
metrics must be satisfied for an oscillation signal to be present, and for Prony 
analysis to be applied. 
Source: Pacific Northwest National Laboratory 

Applying the proposed method from Chapter 2 creates Figure 10, which summarizes the 
identified ringdown range from the 100 data sets.  On average, the ringdown detection 
algorithm indicates the Prony analysis should start at 66.0 seconds. That indicates the detection 
of ringdown data at about 50.0 seconds, on average. For 100 sets of simulation data, the 
standard deviation (std) of ringdown detection time is 0.7 seconds, as indicated by the thinner 
red dash lines.  This indicates the ringdown data is detected with reasonable accuracy. In 
addition, on average, the ringdown data appears to end at 80.4 seconds. The standard deviation 
of ringdown ending time is 3.2 seconds, as indicated by the thinner blue dash lines. 
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Figure 10: Ringdown Detection Results 

 
Ringdown detection results for 100 Monte Carlo simulations.  The red 
line represents the average Prony starting time, with thinner red dash 
lines representing plus or minus one standard deviation.  The blue line 
represents the end of the Prony interval, with thinner blue dash lines 
representing plus or minus one standard deviation. 
Source: Pacific Northwest National Laboratory 

Applying the proposed Prony analysis over the detected ringdown data using a 16-second 
window allows the detection of the mode at 0.42 Hz. Figure 11 shows the individual 0.42 Hz 
modes estimated during the 100 Monte Carlo simulations. Notice that the mode estimates 
cluster around the true mode. It shows that even with a short 16-second window of ringdown 
data, the Prony analysis can provide reasonable mode estimation. In contrast, Figure 12 shows 
the Prony analysis results from ambient data. Observe that applying Prony analysis on ambient 
data with a 16-second window results in large estimation errors. 

In summary, the simulation results show that the proposed method effectively detects 
ringdown data. Power system modes can be estimated within short time window and within 
relatively real-time constraints when the recursive Prony analysis is applied to the detected 
ringdown data. 
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Figure 11: Mode Estimates from Ringdown Data 

 
Modal estimates obtained from applying Prony analysis on the detected 
oscillation interval.  Blue dots represent the estimate for each of the 100 
Monte Carlo trials. 
Source: Pacific Northwest National Laboratory 

Figure 12: Modal Estimates from Ambient Data 

 
Modal estimates obtained by applying Prony analysis to ambient data 
interval.  Notice the high scatter of the results, indicating Prony 
analysis is not a good technique to apply to ambient data. 
Source: Pacific Northwest National Laboratory 
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CHAPTER 4: 
Results of Field Measurement Studies 
To further validate the performance, the proposed oscillation detection algorithm is applied to 
the field measured Phasor Measurement Unit (PMU) data. The data represent events taken from 
the WAMS of the WECC system. To protect the data, some data values are rescaled and the DC 
component is removed.  

When detected, oscillations are marked over the time domain plot. In the following figures, the 
red dashed lines mark the first data point that is valid for Prony study. The magenta dashed 
lines mark the time when the Prony analysis becomes valid. Prony analysis can be performed 
on the data between red and magenta dash line. The distance between the red and magenta line 
is the Prony analysis time window. The Prony window is a constant, which is user selectable. 
The Prony window must be large enough so that there are enough data values for Prony 
equation (2-8) to have solution of reasonable accuracy. The blue dashed line marks the end of 
the ringdown interval. Prony analysis should be performed recursively over the data between 
the red and blue dashed lines. 

WECC Break-up of August 10, 1996 
On August 10, 1996, the western North American power grid experienced a system breakup.  
Later analysis revealed one of the primary causes of the system breakup to be a poorly damped 
inter-area oscillation around 0.25 Hz [Kosterev et al., 1999]. Figure 13 shows real power flow on 
the transmission line from Malin to Round Mountain just before the breakup.  Figure 13 shows 
that a number of lines tripped producing intermediate oscillations.  The proposed oscillation 
detection algorithm was applied to this data set to determine when the Prony analysis can be 
applied to generate accurate mode estimation with a relatively short time window. 

As Figure 13 demonstrates, according to the algorithm, there are three oscillation instances for 
proper Prony analysis with a short time window.  The first and last events represent line trips of 
the Keeler-Allston and Ross-Lexington line, respectively.  Figure 14 and Figure 16 examine the 
detail of these two events.  The middle event represents an oscillation on the system caused by 
device interactions.  Figure 15 examines this oscillation. 

Figure 14 shows a closer plot of the Keeler-Allston line trip, and the resultant oscillation.  As 
Figure 14 indicates, Prony analysis may begin shortly after the 7.1-minute mark of the data. As 
shown in the data, the algorithm correctly identifies the beginning of the oscillation.  The blue 
dashed line marks the point when the Prony analysis should stop. This line indicates where the 
ambient noise begins overwhelming the oscillation signal. 

Figure 15 represents a visible oscillation in the original 1996 data caused by machine and control 
responses after the Keeler-Allston line trip.  Grid dispatch and event information indicates the 
previously tripped Keeler-Allston line unsuccessfully reclosed shortly before this event, so it 
may be a major influence in the presence of this event.  Examining the location of the red and 
blue lines, the oscillation detection algorithm appears to have successfully identified the start 
and end of the oscillation, which would not be visually identifiable from the raw data in Figure 
15.  During the identified oscillation interval, the information contained in the signal is enough 
to drive Prony analysis and obtain valid mode estimates. 
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Figure 13: Malin to Round Mountain Power for August 10, 1996 Event 

 
Recorded real power flow from Malin to Round Mountain with overlaid 
event detail.  Data is referenced from August 10, 1996 at 15:35:30 PDT. 
Source: Pacific Northwest National Laboratory 

Figure 14: Keeler-Allston Line Trip of August 10, 1996 

 
Detail of Keeler-Allston line trip of August 10, 1996 WECC outage. 
Source: Pacific Northwest National Laboratory 
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Figure 15: Second Oscillation of August 10, 1996 Event 

 
Detail of second oscillation detected during August 10, 1996 WECC outage. 
Source: Pacific Northwest National Laboratory 

Figure 16 shows the result of the undamped oscillations from the August 10, 1996 western 
interconnection breakup.  The oscillation is associated with the Ross-Lexington line trip.  Once 
again, the oscillation detection algorithm does a good job of detecting the time interval to apply 
Prony analysis.  The beginning of the oscillation interval clearly coincides well with the time of 
the line tripping.  During this oscillation interval, several units of the McNary Dam generation 
facility were tripped offline.  Shortly after the oscillation in Figure 16, the western 
interconnection began to be unstable and separate into islands.   

Figure 17 summarizes the mode analysis results for the 0.25 Hz mode using different 
algorithms.  The blue thick line in Figure 17 shows the mode estimation results from the 
proposed recursive Prony study. To verify the proposed methods, the results from [Hauer 
2007], using block Prony analysis and ambient data analysis, are also shown in Figure 17 as 
green dots. In addition, the red dashed line in Figure 17 represents the results from the 
application of an R3LS study of [Zhou 2007]. 
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Figure 16: Ross-Lexington Event of August 10, 1996 

 
Detail of oscillations detected for Ross-Lexington line trip of 
August 10, 1996 WECC Outage. 
Source: Pacific Northwest National Laboratory 

Figure 17: Comparison of mode analysis results  

 
Mode frequency and damping ratio estimates from three different 
resources. 
Source: Pacific Northwest National Laboratory 
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Observe that the mode estimates from the three methods are consistent, which indicates that the 
proposed method provides proper mode estimates. Also, observe that there are minor 
differences between estimation results from the different mode analysis algorithms. Note that 
study carried out by [Hauer 2007] is a supervised study, during which the authors’ experience 
chose the data and analysis methods. The R3LS of [Zhou 2009] can be executed automatically, 
but it needs to uses long time window (exponential window of equivalent 2-minute) because it 
does not distinguish between ringdown and ambient data types. In contrast, the proposed 
recursive Prony method automatically recognizes the ringdown responses and automatically 
applies a short time window for the ringdown responses. Thus, the proposed method can detect 
the undamped oscillation in a more timely fashion than the R3LS algorithm. 

R3LS is generalized for ambient data, where long time windows help reduce the estimation 
variance when the modes do not change. However, when mode changes occur quickly, such as 
in a line tripping event, the long time window lowers the tracking capability of the algorithm.  
This results in large bias errors due to the averaging effect. When a ringdown oscillation 
appears, information density is high and the variance of mode estimation is small.  Thus, a short 
time window, as in the proposed method, is more suitable for tracking mode changes. 

In addition, mode estimates from all three methods show the decreasing frequency and 
damping ratio, which are an indicator of small signal stability problems. This indicates that with 
the on-line Prony analysis capability, one would be able to issue early warning of the small 
signal stability problem before the system breakup on August 10, 1996. 

 

Brake Insertion of November 14, 2002 
Ringdown oscillations in the power grid are often associated with lines and generators 
switching or tripping offline.  Another source of oscillations on the power system is the 
deliberate excitation via a large shunt resistance.  Figure 18 and Figure 19 show the results of 
inserting a large 1400 MW resistance into the western power system.  This 1400 MW resistor, 
referred to as the Chief Joseph Dynamic Brake, is often switched in momentarily either to aid in 
improving the stability of the system during machine acceleration events, or to deliberately 
excite the power system for testing the dynamic response of the system. 

Figure 18 shows an overall view of an insertion of the Chief Joseph Dynamic Brake on 
November 14, 2002.  As the figure demonstrates, the detection algorithm detects the oscillation 
interval.  Unlike the August 10, 1996 case presented previously, the oscillation event is very 
prominent and easy to spot visually from the raw data.  Figure 19 shows a closer view of the 
brake insertion and the detected oscillation interval using the oscillation detection algorithm. 
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Figure 18: Brake Insertion of November 14, 2002 

 
Line flow measurement on WECC system for November 14, 2002.  
System event represents insertion of the Chief Joseph Dynamic Brake 
into the system. 
Source: Pacific Northwest National Laboratory 

Figure 19: Brake Insertion of November 14, 2002 Detail 

 
Detail of line flow measurement on WECC system for November 14, 
2002.  System event represents insertion of the Chief Joseph Dynamic 
Brake into the system. 
Source: Pacific Northwest National Laboratory 
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As Figure 19 demonstrates, the algorithm detects the start of the oscillation interval very well.  
An application of Prony analysis from this point would yield a good estimate of the ringdown 
modal content.  In addition, the detection algorithm indicates that Prony analysis can continue 
until approximately the 201-second mark. The final Prony analysis should encompass the 
interval between roughly 170 seconds to 201 seconds.  There are clearly still significant 
components to the resultant ringdown at this point in the data, so the oscillation algorithm is 
still successfully detecting a valid Prony analysis range. 

Alberta Separation of June 10, 2002 
As indicated earlier, one of the routine causes of an oscillatory event on the power system is a 
transmission line switching or tripping event.  Figure 20 shows the measurement data for such 
an event.  On June 10, 2002, the Alberta, Canada power grid separated from the rest of the 
WECC grid.  As shown in Figure 20, an oscillation occurred when the system moved towards a 
new equilibrium point. 

Figure 20: Alberta Separation of June 10, 2002 

 
Line flow measurement on WECC system for June 10, 2002.  System 
event represents a separation of Alberta, Canada from the rest of the 
WECC system. 
Source: Pacific Northwest National Laboratory 

Figure 20 shows the data of the June 10, 2002 Alberta separation event.  This event is not very 
prominent visually in the data interval presented.  Without prior knowledge of the event or the 
oscillation detection algorithm, it is easy to overlook this event.  Figure 21 shows a closer view 
of the event and the oscillation detection algorithm results.   
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Figure 21: Detail of June 20, 2002 Alberta Separation 

 
Detail of line flow measurement on WECC system for June 10, 2002.  
System event represents a separation of Alberta, Canada from the rest 
of the WECC system. 
Source: Pacific Northwest National Laboratory 

Upon closer inspection, there is clearly an oscillatory event associated with the Alberta 
separation.  As Figure 21 shows, the oscillation detection algorithm selects a reasonable interval 
for valid Prony analysis.  The beginning of the selected interval is a valid starting point for 
Prony analysis and the oscillation-ending interval is reasonable, given the data.  

Palo Verde Generation Trip of November 18, 2000 
Generator tripping events are also a prominent cause of oscillatory events on the power system.  
On November 18, 2000, a loss of generation occurred at the Palo Verde generation facility.  
Figure 22 shows the measurement data for this loss of generation. 

As with the previous figures, Figure 22 overlays the results of the oscillation detection 
algorithm.  With a large response to the loss of the generation, the oscillation detection 
algorithm had little trouble locating the proper interval to begin Prony analysis.  The oscillation 
detection algorithm indicated Prony analysis would remain valid until the interval ending 
around 95 seconds.  If the oscillation start time is offset by the 35-second Prony interval, 
significant components of the generation trip’s oscillation are still present in the analysis 
interval, indicating the validity of Prony over that interval. 
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Figure 22: Palo Verde Generation Trip of November 18, 2000 

 
Line flow measurement on WECC system for November 18, 2000.  
System event represents a trip of generation units at the Palo Verde 
facility. 
Source: Pacific Northwest National Laboratory 

PDCI Block on November 2, 2004 
Different forms of oscillations are also possible from normal transmission lines tripping, or 
other disturbances on the power system. Figure 23 shows the high voltage, long DC line 
switching event that occurred on November 2, 2004.  During this event, a planned adjustment 
on the Pacific DC Intertie resulted in a readjustment of the amount of power that the parallel 
AC lines were carrying. 

A closer examination of the oscillation appears in Figure 24.  As with some of the previous 
examples, the event is prominent when compared to the surrounding data.  However, without 
explicit knowledge of when the event occurred, and without the use of the oscillation detection 
algorithm, this event could easily be missed during normal grid operations. 

Figure 24 shows the algorithm clearly detects the ringdown associated with the PDCI event. It 
appears the oscillation analysis begins a cycle too late.  However, the significantly larger swings 
of the first cycle of the oscillation are not at the same frequency as the rest of the ringdown due 
to non-linear behaviors.  Therefore, the detection algorithm does not consider this a valid 
oscillation for the ringdown analysis.  An examination of the prediction correction factor would 
likely show a large deviation as the oscillation moves to a different frequency.  As with other 
detections, once the ringdown event begins to have amplitudes similar to ambient data, the 
algorithm indicates the Prony analysis interval is complete. 
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Figure 23: PDCI Block of November 2, 2004 

 
Line flow measurement on WECC system for November 2, 2002.  
System event represents a planned adjustment of the Pacific DC 
Intertie that resulted in effects elsewhere on the system. 
Source: Pacific Northwest National Laboratory 

Figure 24: Detail of PDCI Block of November 2, 2004 

 
Detail of line flow measurement on WECC system for November 2, 
2002.  System event represents a planned adjustment of the Pacific 
DC Intertie that resulted in effects elsewhere on the system. 
Source: Pacific Northwest National Laboratory 
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Alberta Separation of July 24, 2006 
An earlier example examined an event caused by the separation of Alberta, Canada from the 
rest of the WECC.  Figure 25 represents another Alberta separation on July 24, 2006.  Unlike the 
previous example, the separation is barely visible in Figure 25.  The large, initial oscillation in 
Figure 25 is predominantly a dynamic brake insertion following the faulting of another line in 
the WECC system.  This Alberta separation further differs from the earlier example in that a 
secondary event later in the data is present. 

Figure 25: Alberta Separation of July 24, 2006 

 
Line flow measurement on WECC system for July 24, 2006.  System 
events represent the separation of Alberta, Canada from the WECC 
system, followed by a secondary event. 
Source: Pacific Northwest National Laboratory 

Figure 25 shows the overall oscillation detection algorithm results for the Alberta separation 
event.  As the figure indicates, there are actually three oscillations detected over the data 
interval.  Figure 26 shows the first event in detail. The second and third events appear in Figure 
27. 
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Figure 26: Brake Insertion of July 24, 2006 Alberta Separation 

 
Detail of line flow measurement on WECC system for July 24, 2006.  
System event represents the separation of Alberta, Canada from the 
WECC system, with a corresponding insertion of the Chief Joseph 
Dynamic Brake. 
Source: Pacific Northwest National Laboratory 

The first event of the Alberta separation data set represents a line fault and the insertion of the 
Chief Joseph Dynamic Brake.  The actual Alberta separation occurs around the 810-second mark 
and is not prominent on the data.  Therefore, it was not flagged as a valid Prony interval by the 
oscillation detection algorithm. Recall that the purpose of the proposed oscillation detection 
algorithm is to identify proper ringdown oscillation data for the proper application of Prony 
analysis. Because of low SNR, the data from the non-prominent oscillation is not suitable for 
Prony analysis. 

Figure 26 shows the oscillation that resulted from a brief Chief Joseph brake insertion.  The 
oscillation detection algorithm successfully detects the start of a suitable Prony analysis interval.  
The analysis interval appears to extend well beyond the ringdown data.  However, closer 
examination of Figure 26 reveals a secondary oscillation event over the 850 and 880-second time 
interval.  Given the larger amplitude of the initial oscillation, the secondary oscillation could 
easily have been present, but not apparent in the signal at that time. 

Along with the primary, line-trip event association with the Alberta separation, a secondary 
series of events were also observed.  Figure 27 shows the oscillatory events caused by a 
generation trip, and later responses to that tripping event.  The algorithm successfully detects 
the oscillation at the 1505-second mark.  This oscillation resulted from the trip of a generator at 
the Colstrip generation facility.  Approximately a minute later, other smaller events occurred on 
the system.  While the cause of these oscillations is uncertain at this time, shunt capacitor bank 
switches are likely candidates.  Despite not being as prominent as the initial generator trip 
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event, Figure 27 shows these events were clearly oscillatory in nature and successfully detected 
by the algorithm. 

Figure 27: Colstrip Generation Trip of July 24, 2006 Alberta Separation 

 
Detail of line flow measurement on WECC system for July 24, 2006.  
System events represent the trip of a Colstrip generation unit and a 
secondary event following the separation of Alberta, Canada from the 
WECC system. 
Source: Pacific Northwest National Laboratory 

California Machine Control Event of January 4, 2010 
As indicated earlier in the examples, line trip events and system separations are not the sole 
cause of oscillatory behavior on the system.  Generator controls can also produce oscillatory 
responses on the system.  Figure 28 shows an oscillation caused by a California generator on 
January 4, 2010.  As Figure 28 and the detail plot in Figure 29 show, the event is very prominent, 
but does not begin with an abrupt shift like most of the other oscillation examples presented.    

As Figure 28 shows, the generation oscillation event is visually prominent on the measured 
data.  Unlike the line tripping and system separation events, there is no discrete cause of the 
oscillation.  Rather, the oscillation amplitude slowly increases in response to the event.  Despite 
the lack of a discrete oscillation start, the oscillation detection algorithm still locates suitable 
starting and ending times for ringdown analysis of the event.  Figure 29 provides a detailed plot 
of the oscillation detection times. 
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Figure 28: California Machine Event of January 4, 2010 

 
Line flow measurement on WECC system for January 4, 2010.  System 
event induced by a control event in a generation plant in California. 
Source: Pacific Northwest National Laboratory 

Figure 29: Detail of California Machine Event of January 4, 2010 

 
Detail of line flow measurement on WECC system for January 4, 2010.  
System event induced by a control event in a generation plant in 
California. 
Source: Pacific Northwest National Laboratory 
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The oscillation is very prevalent in the detail plot of Figure 29.  Despite the higher frequency of 
the oscillation produced by this event, the detection algorithm produces a valid Prony analysis 
interval.  Examination of the plot indicates the oscillation may have started a few seconds before 
the red oscillation start line the algorithm determined.  However, at this point in the data, the 
oscillation is still at approximately the same amplitude as the ambient power system noise.  This 
smaller amplitude and less consistent nature of the oscillation required a couple of seconds 
more data before the detection algorithm indicates a valid interval.  Despite this possibly 
delayed starting interval, the ringdown stop interval appears very well selected with the end of 
the ringdown associated with the event. 

Figure 28 and Figure 29 represent the application of the ringdown detection algorithm over a 
short data interval.  For a practical dispatch center application, the ringdown oscillation 
detector would be running over the full 24 hours of the day.  To evaluate this performance, the 
ringdown oscillation detection algorithm was run on the full January 4, 2010 data set.  
According to dispatch records, the California machine control event was the only disturbance 
recorded over the 24-hour period.  The ring-down detection algorithm only detects one event 
over the 24-hour interval as well.  Furthermore, some measurement errors were present in the 
data.  The ringdown oscillation detection algorithm successfully ignores these non-typical data 
points and does not register a false alarm.  Figure 30 shows the detail of the detection. 

Figure 30: Detail of 24-hour Oscillation Detection Run 

 
Detail of line flow measurement on WECC system for January 4, 2010.  System event 
induced by a control event in a generation plant in California.  Results obtained from 24-
hour recursive run of oscillation detection algorithm. 
Source: Pacific Northwest National Laboratory 
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As Figure 30 shows, the ringdown oscillation detection algorithm still detects the California 
machine control event, despite having been running for approximately 17 hours already.  As the 
figure shows, the detected analysis interval is slightly different than that of Figure 29.  This is 
primarily a result of the longer data set.  After running for 18 hours, the detection algorithm has 
a different estimate of the relative noise of the system.  As such, the increasing amplitude of the 
oscillation takes more time to resolve than the shorter data set case.  This also explains the 
shorter Prony interval compared to Figure 29, as shown by the blue dashed-line appearing 
earlier.  Despite these differences, the algorithm still detected a sufficient interval to apply the 
Prony analysis method. 
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CHAPTER 5: 
Implementation and User Interface Design 
With the basic algorithm developed, it needed to be implemented for testing on simulated and 
measured power system data.  The algorithm was fully implemented using the Mathworks 
MATLAB software.  As a result, MATLAB became the basis for implementing the algorithm for 
testing, as well the basic platform for a graphical user interface (GUI). 

The MATLAB environment produced the results presented in Chapters 3 and 4.  The 17-
machine model was used to generate simulation data, which resulted in settings for the three 
ringdown detection criteria described in Chapter 3. Chapter 4 utilized field measurement PMU 
data from the western United States power grid, extracted into MATLAB, to validate the 
proposed method.   

To provide a user-friendly interface, the oscillation detection and analysis method was 
integrated into an existing MATLAB GUI for ModeMeter at the Pacific Northwest National 
Laboratory.  The oscillation detection and analysis method supplements the functionality of the 
ModeMeter GUI.  The GUI intends to significantly improve the usability of the method and 
facilitate the adoption of the method in the grid operation environment.  Figure 31 shows a 
sample screen of the ModeMeter GUI. The GUI allows the oscillation detection and analysis 
method to directly access the field measurement data in PSMT format, which is a standard data 
format for PMU data supported by Dynamic System Identification toolbox [NASPI, 2010a; 
NASPI, 2010b].  

Figure 31: Sample Output of the MATLAB-based GUI 

 
MATLAB GUI running the August 10, 1996 blackout data.  Note that an 
oscillation is being detected, which represents the secondary oscillation 
presented in the earlier section. 
Source: Pacific Northwest National Laboratory 

The MATLAB GUI is fully functional and is ready for pilot testing in control rooms. One 
advantage of the MATLAB GUI is that it is easy to maintain and update for prototype algorithm 
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development. However, it requires a MATLAB license, instead of being a standalone tool. To 
further improve the portability and applicability of the GUI, this project explored implementing 
the algorithm with C++ language.  Figure 32 shows the proposed design of the C++-based GUI.  
Compared with Figure 31, it is apparent the C++ GUI is attempting to mirror the functionality 
of the MATLAB-based GUI. 

Figure 32: Concept for C++-based GUI 

 
Initial concept screen for C++-based oscillation detection GUI.  Circles represent 
areas of functionality described in this section. 
Source: Pacific Northwest National Laboratory 

The proposed graphical user interface of the C++ ModeMeter consists of four major functional 
areas, each circled in Figure 32.  The highlighted areas represent the following implementation 
guidelines: 

1. Data Entry – Data originates from two sources: a real-time data stream, or an offline .csv 
data file. As such, a clear method for selecting the desired input is necessary.  For the 
first one, phasor data concentrator (PDC) communication protocols retrieve data from a 
real-time stream. For the latter one, a .csv file is located on the computer through the 
“Load” button on the GUI.  This allows the data to be loaded from an offline source, and 
then simulate the real-time processes of the GUI.   

2. Sequence Control - “Play,” “Stop,” and “Close” buttons control the data update process 
of the oscillation detection GUI when using an offline data source. If utilizing offline, 
saved data sets, it may useful to run the algorithm in faster than real-time.  The “Speed” 
trackbar controls the update speed of the data source. For example, if “8” is specified, 
the data is imported at rate 8x that of the original display time.  

3. Data Display - Data Display is composed of plotting displays and tabular array display.  
These plots provide the user feedback on the algorithm modal analysis and oscillation 
detection. There are four plotting panels on the ModeMeter GUI, which perform a 
variety of tasks and draw different dynamic curves or plots upon received new data. 
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The Major Modes tabular table shows the parameters of modes of interest, dynamically 
based on the results of the oscillation detection algorithm.  

4. Time Display - Time Display shows both the program’s overall running time, and the 
elapsed plotting time based on a particular source of data. 

Part of the future work would be to continue the development of the C++-based GUI towards a 
tool for control room use. At the conclusion of this project, initial layouts and displays for the 
C++ GUI are set and working.  Furthermore, the following two tasks have been identified to get 
the C++-based GUI ready as a standalone tool.  First, a suitable package of matrix-capable 
solvers must be selected and integrated.  This requirement allows the implementation of the 
ringdown analysis algorithm.  The initial code exists, but requires a resolution of this missing 
capability and in turn requires further work to implement the solvers.  Secondly, the C++ GUI 
needs testing and refinement using field measurement PMU data.   Once the above two tasks 
are finished, prototype C++ GUI tool will be available for more extensive testing and eliminate 
the requirement of MATLAB license.   
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CHAPTER 6: 
Conclusions and Future Work 
Conclusions 
This project developed, implemented, and evaluated a recursive Prony algorithm for 
automatically detecting and analyzing power grid oscillations in near real time using PMU 
data. 

Modal analysis provides vital information about the power system stability.  On-line mode 
identification algorithms based on PMU measurements provide a way for monitoring power 
system modes in near real time. Oscillation alarms can be issued when the power system is 
lightly damped. A good oscillation alarm tool (a.k.a. ModeMeter) can provide time for 
operators to take remedial reaction and reduce the probability of a system breakup from such a 
light damping condition.  

The applicability of the mode identification algorithms relies heavily on the proper use of 
algorithms. Identification algorithms can provide dependable mode information only when 
applied properly on the right signal types. Improper application of algorithms, such as applying 
Prony’s method to ambient data, may result in false alarms and/or missing alarms.  

One of most important categories of data is the oscillation ringdown data, which results from 
major disturbances. It is important to detect the oscillation ringdown for proper application of 
Prony’s method.  The proper application allows the identification of modes within a short time 
window. 

In this report, a method for detecting ringdown data is proposed and evaluated. Through 
Monte Carlo simulation, it was shown that Prony analysis can be applied automatically and 
properly on the detected ringdown data to estimate the power system modes.  The evaluation 
based on the field measurement shows that the proposed method is applicable to the 
measurement data and produces the expected results. By effectively identifying ringdown data, 
the modes can be identified accurately within a short time window. Thus, the detection reduces 
the rate of false and missing alarms. 

A MATLAB-based GUI provides a user-friendly interface for using the algorithm, and for 
further validity testing.  With the ability to utilize offline data or incoming PMU streams, the 
MATLAB GUI provides interested parties with the flexibility to investigate and evaluate the 
ringdown algorithm’s performance.  Initial efforts were put forth to migrate the GUI to a more 
generic C++ platform to eliminate the needs for MATLAB licenses.  The initial interface C++ has 
been established and tested.  In addition, some additional coding efforts are identified to resolve 
some matrix computation issues necessary to build a fully functional, and more portable, C++ 
GUI.   
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Impact and Future Work 
By providing accurate and timely information about the oscillation modes of power grid, the 
study results from this project can help lower the probability of large-scale blackouts, and 
increase the power grid efficiency.  Unstable oscillations can cause power grid breakups and 
even large-scale power outages, such as the power outage that occurred on August 10, 1996 in 
the western interconnection. During the outage in 1996, about 7.5 million customers (24 million 
people) lost their power supply for the range from several minutes to 6 hours [Wikipedia 
contributors, 2010]. According to Table 6-1 of the proposal for the Western Interconnection 
Synchrophasor Program (WISP) [WECC, 2009], the value of large-scale outage avoidance for the 
WECC system is over one billion dollars over the next 40 years. According to [Western 
Congestion et al., 2006], most major tie lines in WECC system are often constrained by stability 
limits, which are more limiting than the thermal limits. The early warnings for unstable modes 
allow the grid to operate at its full capacity, while staying within the stability boundary. The 
method developed in this project is expected to have significant impact on power grid 
operation, as it will improve reliability and avoid significant economic losses. This oscillation 
study is a major breakthrough in the sense that it significantly lowers false and missing alarms, 
as well as shortens detection time by applying oscillation detection and analysis algorithms 
properly.  

However, the study is also limited in the sense of real world applications, and requires 
additional efforts to realize the full benefit. First, the method is only tested with a small, 
simplified model and limited number of field measurement cases. Even though the initial 
testing shows promising results, it needs further studies to guarantee sufficient robustness and 
reliability under typical operating conditions.  Such a requirement is necessary for a useful 
control room tool. Thus, future work includes extensive testing studies with large amount of 
field measurement data.  Revisions and improvements shall occur on the algorithm as a result 
of this testing. 

Second, the project only focuses on the detection and analysis of oscillations. With the 
oscillation information available, a natural next step is to produce actionable information to 
increase damping, effectively suppressing the oscillations. Once the two proposed studies are 
complete, the benefit of oscillation study can be fully realized through improved reliability and 
efficiency of power grid operation. 
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