MEMS Piezoelectric Energy Harvesting for Powering Wireless Sensor Nodes

March 16, 2009

Lindsay Miller Padraic Shafer Dr. Paul Wright

"Cliff Notes" of this talk

- MEMS energy harvesting is enabling technology for wireless sensor nodes
 - □ Provides replenishable power
 - □ Achieves size reductions
 - □ Reduces required maintenance
- First prototype successfully actuated, but resonance frequency too high, power output not high enough.
- Harvester redesigned, second prototype nearing completion.
- ~ 10 µW/beam predicted output for new prototype.
 □ Compared with ~5 nW/beam predicted output from previous devices

California Energy Commission - Public Interest Energy Research Program

First Generation Prototype

Simplified deflection test setup: movie

Array and isolated rectangular cantilevers

Array of trapezoidal cantilevers

Second Generation Prototype: Design

□ Goals:

- beam

- increase power output
- ➔ reduce resonance frequency

➔ increase m_{proof} &

Constraints

- ➔ Maintain die size ~1 cm²
- → ~1 cm² for printed storage
- Retain advantages of MEMS fabrication

Second Generation Prototype: Design

□ Goal: frequency tuning

➔ add a variable printed mass

□ Goal: integrate energy harvesting & storage

➔ leave space on-chip

esearch Powers the Future"

Second Generation Prototype: CAD

Photolithography Layers

California Energy Commission - Public Interest Energy Research Program

Next Steps

- Print masses on completed devices
- Characterize 2nd generation devices
 - \Box V_{AC}, ω _n, Impedance
- Print micro energy storage on-chip
- Integrate with power conditioning circuit and load

E Leland & P Minor

D. Steingart & C. Ho

Again, "Cliff Notes" of this talk

- MEMS energy harvesting is enabling technology for wireless sensor nodes
 - □ Provides replenishable power
 - □ Achieves size reductions
 - □ Reduces required maintenance
- First prototype successfully actuated, but resonance frequency too high, power output not high enough.
- Harvester redesigned, second prototype nearing completion.
- ~ 10 μW/beam predicted output for new prototype.
 □ Compared with ~5 nW/beam predicted output from previous devices

