Power Conversion Circuits for Microintegration

Vision

- Energy conservation is critical for energyharvested wireless sensor nodes (WSNs)
- Nodes are heavily duty-cycled to achieve a standby power of 1-100 $\mu W,$ peak powers can be 100x higher.
- Scavenger to load power efficiency critical at a wide range of power levels
- Efficient and small power conversion circuitry is the key to integrated power generation, storage and use!
- Goal: 1 cm³ nodes and smaller

Methods

- Switched-capacitor (SC) power converters offer significant advantages to inductor-based converters:
 - · Complete integration for sensor nodes
 - · High efficiency over a wide range of power levels
- · PicoCube chip uses two converters:
 - 1.2V 0.8V: PicoRadio
 - 1.2V 2.1V: Microcontroller, sensor
- A synchronous rectifier eliminates diode drops in the scavenger rectifier circuit

Research Questions

- How can we make an efficient converter at µW levels to supply all loads?
- Can we develop analog circuits that function at nW levels, such that they won't dominate circuit power loss?
- How can we efficiently capture the energy from a variety of energy-scavenging devices?
- Can we integrate all these circuits on a single IC?

Findings

Matched Load R₁ = R₅

- Scavenger interface is 88% efficient: ~2x better than a diode rectifier
- Power converters are over 80% efficient, high efficiency at lower output powers
- Average system efficiency = 47% (duty cycled)

PicoCube power conversion IC Fabricated May-Oct. 2007

0.9

0.8

0.7

∑ _{0.6}

0.5

indino 0.4

0.3

0.2

0.1

Converter efficiency (w/ and w/o regulation)

