Development of Self-Correcting Building HVAC Controls

Contractor: Pacific Northwest National Laboratory
PI: Dr. Michael Brambley, <u>michael.brambley@pnl.gov</u>
Co- PI: Dr. Srinivas Katipamula, <u>srinivas.katipamula@pnl.gov</u>

Project Objectives

- Develop and laboratory test algorithms that implement self-correction capabilities for subsystems of HVAC systems
- Prove that self-correcting algorithms can be developed and implemented for the target HVAC systems

Outcomes

- Algorithms ready for implementation in controllers for field demonstration and commercial application
- Underlying methods that may be transferable to creating self-correcting capabilities for other HVAC system components
- Many ("soft") faults eliminated when technology is deployed in the field.
- System operation optimized while other ("hard") faults occur, until physical repairs can be made.
- Energy and cost savings.

What are Self-Correcting Controls?

- Control systems that automatically compensate for faults in sensors, actuators, control code, control parameters and physical equipment
 - Maintain operation of the controlled system at peak performance or at a degraded performance
 - Better than the system would operate without the automatic self correction.
- Examples from other fields:
 - Fighter jet able to land safely after losing a wing.
 - Commercial jet able to land safely after losing all hydraulics.
 - Automatic stability control in automobiles.
- Value for buildings:
 - Keep HVAC systems operating efficiently when faults occur, until service personnel can repair them
 - In some cases, completely compensate for a fault to enable continued peak performance when a component's performance degrades (e.g., a temperature sensor that drifts out of calibration)
 - Save energy and dollars

Pacific Northwest

Essentials of Self-Correcting Controls

- Redundancy is <u>essential</u> to achieve fault tolerance or selfcorrection
- Types of redundancy
 - Physical or hardware redundancy provided by identical back-up components
 - Analytic redundancy provided by analytic models of processes
- Today for HVAC systems and equipment:
 - Physical redundancy is unlikely because of cost
 - Analytic redundancy is possible
- Four Steps to Self Correction
 - Fault detection
 - Fault isolation
 - Fault characterization
 - Fault correction by control code reconfiguration or modification

Schematic diagram of a generic automated monitoring and commissioning process with self-correction

Approach

- Build on accomplishments of an ongoing project with DOE
- Select HVAC subsystems and equipment for which to develop self correction
- Perform fault mode analysis
- Develop self-correction algorithms and supporting fault detection and isolation algorithms where needed
- Laboratory test the performance of the algorithms and study their sensitivity
- Refine and enhance the algorithms as indicated by testing, then retest

