Piezoelectric Vibrational Energy Scavengers Using Sol-gel-Derived PZT Thin Films

Lindsay Miller Padraic Shafer Nathan Emley Paul Wright

Vision

Ubiquitous wireless sensor networks have extraordinary potential for use in applications such as demand response, environmental monitoring, manufacturing & medical devices. Realization of these networks for wide-spread market use requires that the sensor nodes be low-cost, non-intrusive, & maintenance free. A microscale energy scavenger addresses these needs by harnessing environmental vibrations to provide a replenishable source of power for the sensor node while simultaneously reducing the volume occupied by the power generator & the amount of raw materials required.

Methods

To improve sol-gel PZT film piezoelectricity:

Compare crystallinity and annealing characteristics of various bottom electrode/underlayer materials without PZT
Explore impact of spin-coat parameters and anneal schedule on

• Explore impact of spin-coat parameters and anneal schedule on PZT piezoelectric response

To improve power output:

• Develop special geometries: \downarrow resonant *f*, \uparrow % material strained

· Improve piezoelectric constants of the sol-gel PZT film

To improve stability over lifetime:

- Test PZT/top electrode plasma cleaning treatment
- · Explore impact of thermal imprint on piezoelectric behavior
- Use strain engineering (biaxial tensile/compressive layers)

Research Questions

What choice of parameters maximize PZT piezoelectricity?

- What is the impact of bottom electrode materials on PZT morphology?
- · How do the spin-coating and anneal schedules affect PZT piezo reponse?

How can power output be increased?

- How can high f MEMS & low f vibration sources be reconciled?
- How can % of material undergoing strain be maximized?

How can stability/robustness be ensured for lifetime?

- How can electromechanical domains be engineered to prevent fatigue?
- · How can fabrication process be improved to prevent fatigue?

Film quality:

- · Not highly dependent on underlayer and adhesion layers tested
- · Poor film quality not solely due to PZT
- · Expected to be strongly dependent on anneal scedule parameters

Power output

- ~ 20 μW/cm³ predicted from sol-gel films, based on current d₃₃ values
- Modeling shows alternate geometries can increase % strain

Stability/Robustness

· Cleaning step before electrode deposition improves stability

No Ionmill Clean

Center for Information Technology Research in the Interest of Society

