Thermoelectric and Piezoelectric Energy Harvesting

Lindsay Miller Dr. Elizabeth Reilly Romy Fain Alic Chen Deepa Madan Brian Mahlstedt Mike Koplow Prof. Paul Wright & Prof. James Evans

What to remember:

• Thermoelectric

- Composite materials show promise, further improvements under way
- Next steps focus on device prototyping

• Piezoelectric

Low-frequency resonance attained (~31Hz)
Voltage output achieved from HVAC duct (22 mV_{rms})
Integration of harvester & capacitor under way

Energy Harvesting from Waste Heat

Alternate applications

Residential temperature gradients

N-Type

Semiconductor

P-Type Semiconductor

Ceramic Substrate

Hot Side

Electrical Contacts

Design of Thermoelectric Devices

Design Choice:

- Traditional technologies don't optimize for power output
- For waste heat sources, it is best to optimize for maximum power
 - Requires 100-500 μ m element sizes

Direct-Write Dispenser Printing

- 3 axis (X, Y, Z) Dispenser Printer
- 5 μ m resolution stage
- Feature size limited by syringe tip size

Dispenser Printed Thermoeletrics

Initial Material Properties

If bulk material properties could be retained ($\Delta T = 10 \text{ K}$): Predicted Power = 237.6 μ W, Voltage = 1.18 V

> N-type Bi₂Te₃ α: 195 μV/K λ : 1.4 W/m-K

P-type Bi₂Te₃ α:230 μV/K ρ : 1.35e-5 Ω-m ρ : 1.75e-5 Ω-m λ : 1.2 W/m-K

Bulk

Current best material properties ($\Delta T = 10 \text{ K}$) Predicted Power = 61.2 μ W, Voltage = 1.33 V

> N-type Bi₂Te₃ α:200 μV/K ρ: 2.5e-4 Ω-m λ : 0.5 W/m-K

P-type Bi_{0.5}Sb_{1.5}Te₃ α : 250 μ V/K ρ: 2.5e-4 Ω-m λ:0.5 W/m-K

Current

Preliminary Findings

- Existing bulk devices cannot meet the requirements for low waste heat sources to power
- Dispenser printing is a viable technique for creating the optimal size factors
- Initial materials show promising behavior
- Further work is being performed on materials optimization & device fabrication

Printed Thermoelectric Pillars

Device Prototype

Predicted Performance (10K gradient)

Picocube Demand	Predicted	
Power : 10 μ W avg.	Power : 61 <i>μ</i> W.	
Voltage : 0.7 V (DC conv)	Voltage : 1.33 V	

Ambient Vibrations in the Built Environment

• Vibrations in buildings are low acceleration, low frequency

Acceleration and frequency of several vibration sources in buildings

	acceleration (g's)	frequency (hz)	
Washing machine	0.31	85	
Clothes dryer	0.36	121	
Small microwave oven	0.23	121	
External windows by street	0.07	100	
HVAC Etcheverry roof	0.25	185	
HVAC duct Etcheverry 5th floor	0.34	29	
Refrigerator	0.02	59	

S. Roundy, PhD Thesis UC Berkeley 2003. Romy Fain, UC Berkeley undergraduate.

 $D_3 = d_{31}T_1 + \mathcal{E}_{33}^T E_3$

 $S_1 = S_{11}^E T_1 + d_{31} E_3$

 D_i = electric displacement

$$S_i$$
 = strain

$$T_i = \text{stress}$$

 E_i = electric field

 d_{31} = piezoelectric constant

$$\varepsilon_{33}$$
 = permittivity (at constant stress)

*s*₁₁ = elastic compliance (at constant electric field)

First generation prototypes

Curvature of beams - stress compensation

Stress compensation results

Frequency reduction

Data confirms low resonance frequency

Model predicts 31 Hz if Si film t = 0.25 microns, higher freq if Si film is thicker.

Preliminary results: ambient vibrations

Voltage output from energy harvester on duct ~22 mV_{rms}

Printed mass, printed capacitor

This is the first phase of work to integrate energy harvester with energy storage

Take-aways

• Thermoelectric

Composite materials show promise, further improvements under way

Next steps focus on device prototyping

• Piezoelectric

□ Low-frequency resonance attained (~31Hz)

□ Voltage output achieved from HVAC duct (22 mV_{rms})

□ Integration of harvester & capacitor under way

Thank you! Questions?

