

Toward Micro-synchrophasors (µPMUs) for Distribution Networks

Dr. Reza Arghandeh

Postdoctoral Scholar

California Institute for Energy and Environment University of California Berkeley

CPUC – IEEE PES SF Oct 22 2013

Micro-synchrophasors (μPMUs) for Distribution Networks Project

Research partners CIEE, UC Berkeley, LBNL, Power Standards Lab

Why voltage phase angle?

the small phase angle δ between different locations on the grid drives a.c. power flow

$$P \approx \frac{V_1 V_2}{X} \sin \delta_{12}$$

power flows from Unit 1 toward Unit 2

Why measure Voltage magnitude and angle?

- Voltages are easier to measure than currents (PT vs. CT installation).
- By measuring change in voltage angle, we can get a proxy measurement for current flow and power flow.

We measure V1, V2 and δ 12 with uPMU $P \; \approx \; \frac{V_1 \; V_2}{X} \; \sin \delta_{12}$ We calculate Power flow

We know X from distributing line physical construction

Synchrophasors (PMUs) in Transmission Networks

SCADA vs. PMU

Traditional SCADA Real-Time Data Rate

4 seconds

PMU Real-Time Data Rate

30-60/second

Transmission PMUs in North America

NASPI 2010

Transmission PMUs in North America

NASPI 2012

Distribution vs. transmission – important differences:

- mostly radial architecture
- unbalanced and asymmetrical
- diversity among circuits
- subject to more external influences
- less observability for operators

Why PMUs mostly on transmission, not distribution?

- cost / value proposition
- more challenging measurements fractions of a degree
- historically, no need:
 - unidirectional power flow, from substation to load
 - unquestioned stability of distribution system

but this is changing...

What is the µPMU device (PSL product)?

- very low cost: piggy-back on existing distribution instrument, Pqube
- sync with power quality recordings
- local data storage on SD card as low-cost backup
- μPMU can connect to single- or 3-phase, secondary distribution, substation PT, or outlet!

μPMU vs. PMU:

- higher resolution than conventional PMUs: aiming for 0.01°
 vs. PMU 1°
- 512 samples per cycle vs. PMU 1 sample per cycle
- phase-locked sampling for power quality measurements and time-based sampling for synchronized measurements

μPMU and μPnet concept

Time horizon for µPMU Applications

Some interesting problems at the micro-scale

- Need to separate signal from noise Combine phase angle and frequency with info about disturbances, harmonics, lightning strikes...
- Need sampling rate consistent with frequency of phenomena to be observed
 Find angular sampling rate required to observe relevant behavior on the scale of inverter control loops (> 10 kHz)
- How to define "frequency" and "phase angle" when signal < single cycle?</p>
- Need to account for signal latencies everywhere
- What do you mean, "real time"?

Testing prototype µPMUs at PSL

ARPA-E Research Project Plan

- Validate µPMU performance
- Develop μPnet: implement communications, data analysis based on sMAP (simple Measurement and Actuation Profile)
- Install μPMUs and μPnet at pilot site on UC Berkeley campus to make first empirical observations of voltage angle at very high resolution
- Collaborate with partner utilities to install μPMUs and μPnet on selected distribution feeders
- Study the promise of voltage angle as a state variable
- Examine diagnostic and control applications for μPMU data

Possible diagnostic applications for µPMU data:

- unintentional island detection
- fault location
- high-impedance fault detection
- state estimation
- reverse power flow detection
- renewable generation monitoring
- oscillation detection
- characterization of DG Inertia

Possible control applications for µPMU data:

- protective relaying
- Volt-VAR optimization
- microgrid coordination
- seamless intentional islanding and re-synchronization of microgrids
- creative recruitment of distributed resources for ancillary services

Topology and Transient Analysis Fault Analysis Power Quality System Watt Control Volt-Var Control Identification **D-FACTS** Unintentional **Power quality Generator inertia Fault location State estimation** performance island detection monitoring characterization monitoring Resonance Inverter Oscillation **High-impedance Topology status Reverse power** phenomena performance detection fault detection verification flow detection diagnostics control Intelligent **Equipment Health Ancillary Service** FIDVR or Intentional Volt-VAR control, protection **FIDVR risk detection Monitoring** islanding **Validation** optimization coordination **Unmasking loads DG** synchronization **Dynamic thermal FLISR** Reconfiguration and coordination ratings **Demand response Short circuit** Intentional **Voltage mgmt** islanding current analysis Microgrid operation control **Dynamic analysis** Distribution **Network utilization** congestion mgmt **Dynamic flow Transient analysis** control **Optimal DG** operation **DG** adoption planning **Diagnostics & Monitoring Apps Generation and** load forecasting **Operation & Control Apps** Contingency analysis **Planning Apps** 22 **Power Flow**

Analysis

Data requirement for different class of µPMU appellations

	Sampling rate (per cycle)	Angle resolution (milli-deg)	Spatial Resolution (placement)	Data volume (Bandwidth)	Comm
Steady-state	1-2	10-300	Sparse	Medium but	usually
circuit				continuous	low
behavior					
Dynamic	2-512	10-50	Dense	High but	usually
circuit				could be	high
behavior				intermittent	

Sample Application: Detect Reverse Power Flow

Sample Application: Detect Oscillations

IEEE 34 Bus Test System

Sample Application:

Fault Location

Can angle help locate faults on a long feeder?

For a shunt fault, the change in angle is sensitive to the distance from the fault.

846

μPMU Reading at Node 816

Angle appears to be much more sensitive than magnitude.

What determines the shapes of these curves exactly...?

Loads and topology!

Sample Application:

Unmasking load behind net metered DG

Benefits

- Identify exposure to fast DG ramps or loss of DG
- Facilitate forecasting of net load by understanding its composition

Traditional Obstacles

Separate physical measurements of DG and load are needed to reveal how much load is "masked" by generation behind the meter, but may be constrained by access and/or cost.

μPMU measurements *might* allow remote inference of load/DG cancellation behind meter by intelligently combining

- time series net load data
- insolation measurements taken inexpensively at μPMU
- power quality measurements (such as harmonic content and other signature characteristics of load and/or DG)

Conclusion:

Directly observing voltage phase angle should enable:

- better visibility and situational awareness for operators
- avoided outages and faster service restoration
- better understanding of unintended impacts of distributed energy resources (solar PV, electric vehicles)
- Adoption of distributed energy resources (DG, storage, demand response...) for grid services

For the first time, we will be able to actively manage distribution systems with a precise image...

Thank You!

arghandeh@berkeley.edu

