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Why voltage phase angle ?
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Why measure Voltage magnitude and angle?

* \Voltages are easier to measure than currents (PT vs. CT installation).

e By measuring change in voltage angle, we can get a proxy measurement for
current flow and power flow.

We measure V1, V2 and 612 with uPMU

We calculate Power flow \

We know X from distributing line physical
construction
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Synchrophasors (PMUs) in Transmission Networks
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SCADA vs. PMU

Traditional SCADA Real-Time Data Rate
PMU Real-Time Data Rate
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Synchrophasor wide-akea real-time mm capahilities
are beginning toshew-up in m@.smlswontrol
rooms around the world.
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Transmission PMUs in North America

Phasor Measurement Units in
North American Power Grid
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Transmission PMUs in North America

Phasor Measurement Units in
North American Power Grid
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What about Distribution Ne
Distribut_ion real-time monitoring systems are
getting more attention because of higher

l penetrations of distributed generation,
especially PV, and changes in customer GF
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Distribution vs. transmission — important differences:

* mostly radial architecture

* unbalanced and asymmetrical
 diversity among circuits

* subject to more external influences
* |ess observability for operators
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Why PMUs mostly on transmission,
not distribution?

® cost / value proposition
® more challenging measurements — fractions of a degree

® historically, no need:
- unidirectional power flow, from substation to load
- unquestioned stability of distribution system

but this is changing...




What is the pnPMU device (PSL product)?

® very low cost: piggy-back
on existing distribution
instrument, Pqube

® sync with power quality
recordings

® local data storage on SD
card as low-cost backup

® UPMU can connect to
single- or 3-phase,
secondary distribution,
substation PT, or outlet!
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MPMU vs. PMU:

® higher resolution than conventional PMUs: aiming for 0.01°
vs. PMU 1°

® 512 samples per cycle vs. PMU 1 sample per cycle

® phase-locked sampling for power quality measurements and
time-based sampling for synchronized measurements
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MPMU and pPnet concept
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Time horizon for uPMU Applications

impulse  waveform voltage and RMS sags, swells
caoture  changes current harmonics interruptions B proposed uPMU measurements
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Some interesting problems at the micro-scale

Need to separate signal from noise

Combine phase angle and frequency with info about
disturbances, harmonics, lightning strikes...

Need sampling rate consistent with frequency of
phenomena to be observed

Find angular sampling rate required to observe relevant
behavior on the scale of inverter control loops (> 10 kHz)

How to define “frequency” and “phase angle” when
signal < single cycle?

® Need to account for signal latencies everywhere

® What do you mean, “real time”?

California Institute for
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Testing prototype uPMUs at PSL
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ARPA-E Research Project Plan

® Validate uPMU performance

® Develop pPnet: implement communications, data analysis

O]

based on SMAP (simple Measurement and Actuation Profile)

Install uPMUs and pPnet at pilot site on UC Berkeley campus
to make first empirical observations of voltage angle at very
high resolution

Collaborate with partner utilities to install uPMUs and pPnet
on selected distribution feeders

Study the promise of voltage angle as a state variable
Examine diagnhostic and control applications for uPMU data

California Institute for

Energy and Environment



Possible diagnostic applications for uPMU data:

© ® © ® ©® ® @®

unintentional island detection
fault location

high-impedance fault detection
state estimation

reverse power flow detection
renewable generation monitoring
oscillation detection

characterization of DG Inertia

20



Possible control applications for uPMU data:

® protective relaying
Volt-VAR optimization

microgrid coordination

®©@ ® ®

seamless intentional islanding and
re-synchronization of microgrids

creative recruitment of distributed resources
for ancillary services

®
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Data requirement for different class of uPMU

appellations
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Sample Application: Detect Reverse Power Flow

3 km

@ 10MVA rated overhead distribution feeder - 13.8 kV L-L 8 kV L-N 60 Hz
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positive slope =
reverse power flow
in this feeder segment
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Sample Application: Detect Oscillations

Substation - 3 km -
@ 10MVA rated overhead distribution feeder - 13.8 kV L-L 8 kV L-N 60 Hz
1km =
2 )
PT C ®
100 kW 2 10 millidegrees
LPMU 1 MVA
1 MVA
Inverter Inverter
(Brand x) (Brand y)
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Sample Application:

Fault Location

PMU
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Can angle help locate faults on a
long feeder?
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For a shunt fault, the change
in angle is sensitive to the
distance from the fault.

Angle appears to be much
more sensitive than

magnitude.

What determines the shapes
of these curves exactly...?
Loads and topology!

27



Sample Application:
Unmasking load behind net metered DG

Benefits

* |dentify exposure to fast DG ramps or loss of DG
* Facilitate forecasting of net load by understanding its composition

Traditional Obstacles

Separate physical measurements of DG and load are needed to reveal
how much load is “masked” by generation behind the meter, but may
be constrained by access and/or cost.

HPMU measurements might allow remote inference of load/DG

cancellation behind meter by intelligently combining

- time series net load data

- insolation measurements taken inexpensively at uPMU

- power quality measurements (such as harmonic content and other signature
characteristics of load and/or DG)



Conclusion:

Directly observing voltage phase angle should
enable:

e better visibility and situational awareness for operators
e avoided outages and faster service restoration

e better understanding of unintended impacts of
distributed energy resources (solar PV, electric vehicles)

e Adoption of distributed energy resources (DG, storage,
demand response...) for grid services



For the first time, we will be able to actively
manage distribution systems with a precise image...

PECAMA IRk
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