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Objectives, Organization, and Acknowledgements:  
 
Objectives:  This report is an account of work addressing the following task objectives: 
• Review and evaluate current knowledge and models for forecasting wind, solar thermal and 

photovoltaic generation resources, and recommend ways in which forecasting can be 
enhanced. 
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• Review and evaluate maps and databases locating geothermal, wind and solar thermal 
resources, and maps and databases of transmission lines and loads in the LA Basin and the 
Salton Trough.  

 
Project Organization and Acknowledgements:  The authors and contributors thank the 
California Energy Commission and its Public Interest Energy Research Program for 
initiating, identifying objectives and funding the work presented in this report.  The 
project scope was organized according objectives and team expertise.  Thus, Parts 1 and 
2 of Task 1 were complete by the California Solar Energy Collaborative (CSEC) and the 
California Wind Energy Collaborative (CWEC) respectively.  Task 2 was a joint effort 
coordinated by the California Geothermal Energy Collaborative with contributions 
from CSEC and CWEC. Other valuable contributions to the project are acknowledged 
as follows: 
 
Task 1: California Renewable Energy Forecasting, Resource Data and Mapping, 
Part 1 of 2: Solar Forecasting:  The California Solar Energy Collaborative team is grateful to Bill 
Mahoney (NCAR), James Blatchford (CAISO), Phil de Mello (UC Davis) for their input. 
 
Task 1: California Renewable Energy Forecasting, Resource Data and Mapping, 
Part 2 of 2: Wind Data Forecasting and Mapping:  The California Wind Energy Collaborative 
team thanks the following people for their input: Jim Blatchford (CAISO), Phil de Mello (UC 
Davis), Bill Mahoney (NCAR), Barry Gilman (SCE), Jim Molesworth (enXco), Andrew Klingler 
(PG&E), and Buck Cutting (SMUD). 
 
Task 2: California Renewable Energy Forecasting, Resource Data and Mapping, 
Identification of Areas within the Los Angeles Basin and Salton Trough with Potential for 
Integrated Renewable Energy Projects:  Jacque Gilbreath and Terry L. Rose of the California 
Energy Commission's Cartography Unit of the Siting, Transmission and Environmental 
Protection Division provided the base maps used to construct Figures 10 and 13, and their 
support is gratefully acknowledged. The California Geothermal Energy Collaborative team also 
thanks Chris Silva for his work in support of the data retrieval and organization effort. 
Conversations with Pablo Gutierrez, Prab Sethi and Gail Wiggett of the California Energy 
Commission substantially improved the presentation and analysis. 
 
 
Executive Summary 
 
INTRODUCTION 
 
Renewable Energy Data Milestones and Questions 
 
This report summarizes a short term project responding to California renewable energy 
data milestones identified in Energy Commission renewable energy technology 
roadmaps and in the California Renewable Energy Collaborative strategic plan.  
Specific milestones include: 
 
• Increased Data Integration and Dissemination:  “A historical, real-time and 

forecasted data portal is established and accepted by industry that expands tiered 
access to data for a mix of private and public use. The portal would have flexible 
architecture designed for new data inputs in the future.”  (high priority/long term)1 

                                                 
1 Roadmap for Utility-Scale Renewable Energy, Navigant Consulting, September 30, 2009 



 4 of 11 

• Improved Sensor Deployment Plan:  “A plan for optimizing the state-wide 
deployment of met towers and other resourcing-monitoring sensors has been 
developed.”  (high priority/mid-term)1 

• Data Access:  “Establish a database and related web-portal that would allow easy 
access to updated resource assessments. Key the database so that site-specific data 
can be readily accessed. Assure that the available data are regularly updated and 
vetted within the geothermal community.” 2 

The work reflected in this report provides initial answers to some important questions, 
including the following:   
 
Solar and Wind Forecasting Data Needs 
 
• What is the current state of the art in wind forecasting in support of California grid 

operations, including commercial software offerings, sources of real time wind data 
available and being to calibrate day-ahead and hour-ahead forecasts, and forecasting 
applications in development that will be deployed by CAISO and the state’s 
transmission operators? 

• How can the accuracy and coverage of forecasting capabilities in current use be 
improved by deploying additional sensors and capabilities for analytical 
interpretation of real time energy production data? 

• What data sources are available to support day-ahead and hour-ahead forecasting of 
solar power plant performance, and what is the current state of the art in solar 
power plant operation using such data sources to dispatch thermal energy storage 
and predict ramping and variability of utility scale PV plant output? 

• What data needs exist or will exist for solar forecasting services in the context of 
smart grid operation, and how can real time production data from rooftop systems 
be used in production forecasting at all deployment scales, i.e. building, community 
and utility? 

 
Resource Data for Integrated Renewable Energy Systems 
 
• Based on mapping of available and relevant data, what potential exists for 

geothermal energy production at oil and gas wells in the LA Basin? 
• Based on mapping of oil, gas and geothermal wells and power plants, what 

potential exists for building, community and utility scale geothermal energy 
applications in the Salton Sea Trough? 

• What GIS mapping resources exist for solar radiation in the LA Basin and Salton Sea 
Trough, and what upgrades are feasible in the short term? 

• What GIS mapping resources exist for wind resources in the LA Basin and Salton 
Sea Trough, and what upgrades are feasible in the short term? 

• What GIS maps are available that show transmission, distribution and related 
facilities in the LA Basis and Salton Sea Trough, and how can these maps be best 
adapted for use in concert with RE resource maps?  

• Where in the LA Basin and Salton Sea Trough are large concentrations of residential, 
commercial or industrial load within five miles of potential integrated renewable 
energy systems sites, and is the current electricity delivery infrastructure capable of 
delivering renewable energy from these sites to the nearby load concentrations? 

                                                 
2 California Renewable Energy Collaborative Strategic Plan and Organizational Structure, June 2009, page 17 
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• What opportunities and barriers to hybrid RE system deployment in the LA Basin 
and Salton Sea Trough can be inferred from available GIS mapping information? 

 
The above questions reflect the intended use of California state-wide solar and wind 
forecasting data in balancing electricity supply and demand on a state-wide basis.  They 
also reflect awareness that regional and local balancing requires both historical resource 
information as well as data that can be processed and used in near term resource 
forecasting.  Attempting to develop such information and data to the required degree of 
refinement on a state-wide basis was outside the team’s capacity and schedule, so 
efforts were focused on a geographic zone having good resource quality and diversity 
as well as strategic importance to the reliable operation of the California’s electricity 
grid.    
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BACKGROUND AND RECOMMENDATIONS 
 
Renewable Energy Resource and Forecasting and Mapping - Background 
 
Regarding forecasting of variable resources, wind forecasting has quickly evolved as a service 
offered to transmission system operators by multiple vendors globally.  The California 
Independent System Operator is one such customer.  As the dialog between vendors and their 
ISO customers continues, wind forecasting services will evolve to be more accurate and include 
more predictive features, e.g. unusual weather conditions that result in abnormal wind delivery 
profiles, e.g. strong winds that require taking wind plants off line.  It is likely that wind and 
solar forecast offerings will be integrated as well.   
 
Because the solar energy deployment in California will encompass building scale, community 
scale as well as utility scale PV generation, as well as solar thermal power plants with and 
without thermal energy storage, solar forecasting services and customers will likely be more 
diverse and sophisticated than for wind alone.  It is easy, for example, to imagine ways in which 
the evolving “smart grid” will be able to deliver solar forecasting information to communities 
and buildings for purposes of regulating demand in anticipation of solar generation patterns in 
the context of real time pricing by local electricity distribution companies. 
 
It is equally easy to imagine solar and wind forecasts being integrated to determine the best 
strategy for thermal storage charge and discharge and the appropriate price signals to the 
operators of solar power plants that include storage capacity. 
 
It is important for RD&D programs like PIER to envision such emerging technical integration 
solutions in order to fund the data collection and public access databases that will be needed to 
fully optimize California electric system operations and minimize end user costs overall.  
 
Regarding mapping in support of integrated systems development, the LA Basin represents a 
resource context in which electric transmission and distribution infrastructure is pervasive, and 
circuits are loaded according to utility customer demand.  In this context the time variability of 
the local renewable resource mix would be of prime interest, because it would affect local 
reliability and power flows.  These considerations, along with local demand forecasts would 
determine the extent to which new investment in transmission and distribution infrastructure 
could be avoided. 
  
Another consideration for the LA Basin is the fact that it represents a major load center with 
constraints on the capacity of its transmission gateways.  In other words, during high demand 
periods, there is a limit on the capacity to feed electricity into the area from the state-wide grid.  
The existence of renewable generation sources in the Basin would mitigate this limit and 
possibly result in avoided costs of increasing gateway transmission capacity. 
 
The Salton Sea Trough area represents a resource context in which deploying additional 
renewable resources may require additional transmission upgrades or even new corridors.  
Cost of service impacts of such investments would be minimized to the extent incremental and 
existing transmission capacity could be operated with less variability and higher utilization 
factors.  This would require adjusting the mix of renewable and energy storage systems in the 
resource area for least combined generation and transmission cost.  
 
Finally, development of integrated renewable energy resources in the Salton Sea Trough area 
may require greater attention to environmental factors than development in areas with high 
human population densities.  The extent to which multiple resources could be converted on the 
same generation plant site would tend to reduce environmental impacts for a given amount of 
energy supply.  Shared site infrastructure could represent an economic opportunity as well.  For 
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example, solar and wind arrays could at least conceptually share electricity collection and 
interconnection infrastructure. 
 
 Definitive determinations on the matters discussed above are beyond the scope of the present 
effort but can be addressed in future case studies. 
 
Renewable Energy Resource and Forecasting and Mapping - Recommendations 
 
The work reported here is foundational to longer term efforts to address the above questions 
more fully and in greater depth.  Core efforts were significantly constrained by a four month 
period of performance, following which a six month no cost extension allowed for some 
refinements.  A major recommendation is that efforts to address the above questions be re-
initiated by research teams having a longer period of performance.  Their charter should 
include efforts to apply resource information, including maps and real time forecasts to 
practical problems facing both project developers and energy system operators.  Validation of 
the accessibility and practical use of information and data resources should be part of any effort 
to develop such resources.   
 
Solar Forecasting State of the Art - Background 
As solar thermal and photovoltaic (PV) generation begins to have a larger role in electrical 
generation in California, the California Independent System Operators needs to accommodate 
their variable nature in its forecasting and dispatching.  Likewise, solar power plant operators 
and net metered utility customers using solar PV will have uses for forecasting information.  

Load forecasts have been an integral part of managing electric energy markets and 
infrastructure for many decades. Consequently, experiences, regulations, and planning by 
utilities and independent system operators (ISO) are the dominant consideration for this report. 
Furthermore the rules established by ISOs will impact the economic value of forecasting to 
other stakeholders such as owner-operators. Consequently, in the near-term the primary 
stakeholder to be considered for forecasting needs and plans is the California Independent 
System Operators. Secondary stakeholders are utilities who will see greater distributed PV 
penetration on their urban distribution feeders. Currently on a few utilities have mechanisms in 
place to use solar forecasts for local automated response to voltage fluctuations caused by solar 
production.  

The market need for better solar power integration and planning tools have been widely 
recognized (e.g. DOE FOA 0085, CEC PON 08-11, CSI RD&D Round 1). CAISO uses the 
following forecasts: The day ahead (DA) forecast is submitted at 0530 prior to the operating day, 
which begins at midnight on the day of submission and covers (on an hourly basis) each of the 
24 hours of that operating day. Therefore, the day ahead forecast is provided 18.5 to 42.5 hours 
prior to the forecasted operating day. The vast majority of conventional generation is scheduled 
in the DA market. The hour ahead (HA) forecast is submitted 105 minutes prior to each 
operating hour. It also provides an advisory forecast for the 7 hours after the operating hour. 
CAISO also is studying in intra-hour forecasts on 5 minute intervals. FERC has issued a Notice 
of Proposed Rulemaking requiring public utility transmission providers to offer all customers 
the opportunity to schedule transmission service every 15 minutes, and requiring providers 
with variable renewables on their systems to use power production forecasting. 

Currently, under the CAISO Participating Intermittent Resources Program (PIRP), a 
participating intermittent resource receives special settlement treatment that nets output 
deviations over a month’s period if the resource’s scheduling coordinator submits hour ahead 
forecasts developed by a forecast service provider for that operating hour (de Mello and 
Blatchford, personal communication, 2010). Although the PIRP program does not require them, 
in practice DA forecasts are provided under the same contract. Wind units may participate in 



 8 of 11 

DA market however no special settlement treatments apply. Forecasts are integrated in CAISO 
planning, but there is no financial incentive to the forecast providers for accurate forecasts.  

At some point PIRP may be modified and renewable generators will be required to participate 
in parts of the regular DA and HA markets. In that case some of the economic benefit and 
interest in forecasting would shift to the owner-operators of renewable power plants which 
would dramatically change the marketplace for renewable forecasting. An example of such a 
system is the Spanish ‘premium tariff’ for the regulation of renewable energy which allows 
operators of power plants to participate directly on the electricity market instead of reverting to 
flat-rate prices. The premium tariff option motivates operators of renewable energy plants to 
increasingly act like managers of conventional plants, selling electricity at the liberalized 
market. Just like a normal market participant, the operator places bids in advance on the DA 
market and is obliged to fulfill them. Thus there is the need for operators of renewable energy 
plants to be able to provide predictable and “dispatchable”energy in the profitable premium 
tariff. 

Solar Forecasting State of the Art - Recommendations 
• Current Forecast Skills:   
 
Satellite and numerical weather prediction (NWP) are currently the best tools for hour ahead 
(HA) and day ahead (DA) forecasts, respectively. Efforts are underway by solar forecasters and 
NOAA to improve mesoscale NWP for the HA market.  
 
Further research should be conducted on the forecast skills of the low hanging fruit - 
operational NWP models - for California. The applicability of mesoscale NWP to locally 
enhance forecast skill should also be quantified. This research would enable wind forecast 
providers to adapt their existing products for the solar forecasting market and quantify the 
potential success of such an approach. 
 
Support should be provided to the California ISO to conduct a 12 months forecast ‘competition’ 
to evaluate forecast skills of forecast providers and maturity of different approaches. Careful 
design of such a study is critical and stakeholders should be consulted in the planning stage. 
 
• Expanding ground measurements:   
 
Ground measurements of global horizontal irradiance and direct normal incident irradiance for 
concentrating plants should be (and currently are) required by the California ISO for utility 
scale solar farms. To improve HA and intra-hour forecasts statewide, more ground data are 
necessary. The most economical approach would be to require or incentivize 3rd party data 
providers / aggregators to share PV output and radiometer data in real time with the ISO, 
utilities, and forecast providers. Models should be developed to derive solar irradiance values 
from such ground PV data. The advent of smart meters that can monitor residential PV outputs 
provides an additional avenue to implement this strategy. Also, research on sky imager 
deployments in areas with high PV penetration should be pursued. 
 
• DNI Forecasts:  
 
Research on radiative transfer in the atmosphere related to direct normal incident (DNI) 
forecasts is necessary. These forecasts should evaluate the effects of cirrus clouds, forest fire 
smoke, dust storms, and urban aerosol air pollution transport on concentrating solar power 
plants in California. 
 
Please refer to the report “Appendix 1 – Current State of the Art in Solar Forecasting,” for a full 
review of solar power forecasting and more detailed recommendations. 
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Wind Forecasting State of the Art – Background 
 
A wind power forecast is an estimate of the expected power production of one or more wind 
turbines (or wind plants) in the near future (from a few minutes to several days ahead). This 
estimate is usually generated using one or a combination of wind power forecast models. A wind 
power forecast model is a computer program that uses various inputs to produce wind power 
output for future times. The complexity of the wind power forecast models can range from very 
simple to very complex. For example, one of the simplest models is the persistence model. In this 
model, the forecast for all times ahead is set to the value it has now. The persistence model 
performs surprisingly well for very short forecast horizons (up to six hours) and it has become 
the benchmark that all other forecast models have to beat. Compared to the persistence model, 
modern wind power forecast models are notably more complex. These modern forecast models 
are often called wind power forecast systems by their developers, probably due to their 
complexity. For example, AWS Truewind’s eWind system involves using a combination of 
physics-based models (such as Mesoscale Atmospheric Simulation System (MASS), Weather 
Research and Forecasting (WRF), and Mesoscale Model Version 5 (MM5)), statistical models 
(such as Screening Multiple Linear Regression (SMLR) and Artificial Neural Network (ANN)), 
and plant output models.  
 
Wind Forecasting State of the Art – Findings and Recommendations 
 
• The rapid growth in installed wind power capacity has led to an increased interest in wind 

power forecasting. More and more utilities and ISOs are adopting, or planning to adopt, 
central wind forecasting systems as a means of more effectively integrating greater amounts 
of wind energy.  

• Currently major stakeholders in California (PG&E, SMUD, California ISO, SCE) use both 
hour ahead (HA) forecasts and day ahead (DA) in their daily business (for power generation 
scheduling, power trading, system operating, etc). There is an emerging interest in intra-
hour forecasting from a few parties.  

• There exist two approaches to the short-term wind power forecasting: physical approach 
and statistical approach. In some cases, a combination of both is used. Most forecast models 
employ numerical weather prediction (NWP) models to improve forecast accuracy.  

• The accuracy of the forecasts from a wind forecasting model depends on a number of 
factors, such as wind plant terrain topology, surface roughness, weather regime, wind 
pattern, forecast horizon, etc. For a specific wind forecasting project, comparison of different 
models needs to be carried out in order to find the “best” forecasting model or combination 
of models.  

• The quality and availability of data are critical to successful wind forecasts. It is 
recommended to fund and support work focusing on better understanding the data 
impacts, improving data acquisition and transmission, promoting data sharing, and 
developing new technologies in meteorological measurements.  

• There are limited studies on ramp forecasting. More efforts need to be taken to improve 
ramp rate forecasting. When forecasting ramp rates, it is important to define the aspects of 
ramping that have the highest priority such as ramp time start, ramp rate or magnitude. The 
CAISO and other system operators should work with forecasters to determine how to ask 
for and evaluate ramp rate forecasting.  

• Wind data are recorded and stored by a variety of entities in California, including the 
California ISO, IOUs and munis, wind plant owners, wind developers, NOAA and NWS, 
and a few other organizations and government agencies. Most data have restricted 
availability/accessibility, inconsistent data quality, and insufficient sampling frequency.  
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• Additional recommended future research include: new technologies in meteorological 
measurements, turbine icing forecasting, and studies on atmospheric boundary layer 
profiles.  

• Currently the penetration level of wind energy in communities and buildings is low. 
Current industry does not see any need for distribution level wind forecasting.  

 
Please refer to the report “Appendix 2 - Wind Power Forecasting: A Review of State-of-the-Art 
and Recommendations for Better Forecasts”, for a full review of wind power forecasting and 
more detailed recommendations. 
 
Resource Mapping:  LA Basin and Salton Sea Trough - Background 
 
Renewable energy resources in Southern California are extensive but unevenly distributed. Two 
regions that hold promise for integrating renewable energy resources are the Los Angeles Basin 
and the Salton Trough/Imperial Valley.  
 
Previous work had identified and quantified the power generating capacity of solar and wind 
technologies in the study areas. Although the geothermal resource in the Salton Sea/Imperial 
Valley region has been assessed, the geothermal resource in the Los Angeles Basin had not been 
previously estimated. Therefore, separate methodologies had to be developed for establishing 
the extent of co-located resources in the two regions.   
 
The Los Angeles Basin geothermal resource was established by obtaining data from the 
California Division of Oil, Gas and Geothermal Resources database on oil pools in the Los 
Angeles Basin. We considered a pool a potential geothermal resource if the pool had 
temperatures exceeding 91oC. Such pools were also characterized as "geopressured" if the 
pressure in the pool exceeded 10% of the nominal hydrostatic pressure. The identified pools 
were then mapped with respect to already characterized solar and wind resources. The results 
demonstrate that twelve pools in the Los Angeles Basin are likely geothermal resources. Of 
these twelve, five are located in close proximity to substantial wind resources. Although the 
solar potential is somewhat limited, there does exist substantial opportunity to locate rooftop 
solar PV technology in regions where geothermal pools exist, thus providing an opportunity for 
development of "micro-grid integrated systems". The most substantial wind and solar co-
located resources are in the eastern part of the study region, where there are no geothermal 
resources. The existing transmission infrastructure in all but the eastern region is well 
developed and likely capable of supporting development of integrated systems without 
substantial infrastructure build-out. In the eastern part of the area, transmission corridors are 
well established, but they are localized.  
 
Development of integrated systems in the Salton Sea/Imperial Valley region has good potential 
to succeed. There are fifteen geothermal power-generating facilities in the area, along with 1 
solar power-generating facility. Comparison of geothermal and solar resource assessments 
indicates that substantial additional development could take place. The existence of a local 
transmission infrastructure that already accommodates these renewable energy resources 
suggests further development could occur on an as-needed basis. The wind resource in the area 
is also substantial, particularly in the eastern third of the region, and is co-located with the 
highest solar power density. Between the Salton Sea and the eastern highlands there exist 
numerous indications of geothermal resources, suggesting that this area may be appropriate for 
more detailed consideration for development of integrated systems.  
 
Resource Mapping:  LA Basin – Findings and Recommendations 
 
Within the Los Angeles Basin twelve oil pools were identified that theoretically possess 
sufficient thermal energy to support power generation. Of these, four are located in proximity 



 11 of 11 

to significant wind resources such that co-located power generation facilities could be feasible. 
The existing transmission infrastructure appears to be suitable to allow relatively easy 
development of these resources, although no detailed analysis of this challenge was 
undertaken. Co-located wind and solar resources occur in south-western San Bernardino 
county and have the potential to be significant energy resources. Transmission infrastructure is 
sufficient to service a corridor through this area, but extensive infrastructure development 
might be required to access some of the most significant resource areas. Co-located geothermal 
resources and warehouse roof-top solar resources are significant in three geothermal pools in 
LA County and warrant consideration for generation purposes at a local urban feeder scale.  
The Salton Trough/Imperial Valley area has very extensive geothermal, solar and wind 
resources. The nature of the solar and geothermal resources could allow co-location of 
generating capacity throughout most of the area. The wind resource is mainly restricted to the 
eastern, mountainous portion of the study area. This resource is extensive and overlaps with the 
solar resource. Transmission infrastructure appears to be capable of accommodating build-out 
of generating capacity without the need for extensive construction of new transmission 
corridors within the Imperial Valley, particularly if co-located generating sites are carefully 
selected to maximize both access to transmission and coordination of resource development.  
 
We recommend follow up effort to develop detailed resource assessments of the individual oil 
pools identified in the Los Angeles Basin area to establish the magnitude of each resource and 
its variability both with depth and with areal extent. The resource assessment should include 
the total resource reserve (that is, the amount of energy that is economically feasible to produce 
given existing technology) and the resource base (that is, the total amount of energy that is 
present, but which may not be technically or economically accessible given existing technology). 
Such an analysis should also identify the local loads that could be supplied by these resources, if 
developed from a "distributed generation" perspective, and determine the capacity of these 
resources to supply electrical power to the broader power grid. 
 
Please refer to the report “Appendix 3 – “Identification of Areas in Southern California with 
Potential for Integrated Renewable Energy Projects, Part 1”, for full documentation and 
discussion of supporting analysis. 
 
Resource Mapping:  Salton Sea Trough – Findings and Recommendations 
 
The Salton Trough/Imperial Valley area has extensive geothermal, solar and wind resources. 
The nature of the solar and geothermal resources could allow co-location of generating capacity 
throughout most of the area. The wind resource is mainly restricted to the eastern, mountainous 
portion of the study area. This resource is extensive and overlaps with the solar resource. 
Transmission infrastructure appears to be capable of accommodating build-out of generating 
capacity without the need for extensive construction of new transmission corridors within the 
Imperial Valley, particularly if co-located generating sites are carefully selected to maximize 
both access to transmission and coordination of resource development. However, further 
analysis of this topic is required to establish rigorous caveats to this conclusion. 
 
Please refer to the report “Appendix 4 – “Identification of Areas within Southern California 
with Potential for Integrated Renewable Energy Projects, Part 2”, for documentation and 
discussion of supporting analysis. 
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 Current State of the Art in Solar Forecasting 
 

Jan Kleissl, University of California, San Diego 
 
Abstract:  As solar thermal and photovoltaic generation begin to have a larger role in electrical 
generation in California, the California Independent System Operators needs to accommodate their 
variable nature in its forecasting and dispatching. This project reviews and evaluates current knowledge 
and models for forecasting solar resources and considers options for improving forecasts through RD&D 
and additional measurements.  
Satellite and numerical weather prediction (NWP) have been shown to be the best tools for hour ahead 
and day ahead forecasts at this time. However, NWP solar forecast performance has yet to be evaluated 
for California, where the coastal microclimate especially may present a significant challenge. To validate 
and calibrate such forecasts, an aggregated real-time production database for all metered PV systems is 
deemed to be the most spatially dense and economical set of “measurements.” A research roadmap for 
improving Direct Normal Irradiance forecasts is provided. 
 
Keywords: solar thermal, photovoltaic systems, energy, renewable, forecast, NWP, modeling 

Overview:  As solar thermal and photovoltaic (PV) penetration increases, the California Independent 
System Operators (CAISO) needs to accommodate their variable nature in its forecasting and dispatching.  
This project reviews and evaluates current knowledge and models for forecasting solar resources and 
considers options for improving forecasts through research and measurements. 
 
Summary of recommendations (more detail is provided in section 4.3): 

a) Current Forecast Skills: Satellite and numerical weather prediction (NWP) are currently the 
best tools for hour ahead (HA) and day ahead (DA) forecasts, respectively. Efforts are underway 
by solar forecasters and NOAA to improve mesoscale NWP for the HA market.  

o Further research should be conducted on the forecast skills of the low hanging fruit - 
operational NWP models - for California. The applicability of mesoscale NWP to locally 
enhance forecast skill should also be quantified. This research would enable wind 
forecast providers to adapt their existing products for the solar forecasting market and 
quantify the potential success of such an approach. 

o Support should be provided to CAISO to conduct a 12 months forecast ‘competition’ to 
evaluate forecast skills of forecast providers and maturity of different approaches. Careful 
design of such a study is critical and stakeholders should be consulted in the planning 
stage. 

b) Expanding ground measurements: Ground measurements of global horizontal irradiance (GHI) 
(and direct normal incident irradiance (DNI) for concentrating plants) should be (and currently 
are) required by CAISO for utility scale solar farms. To improve HA and intra-hour forecasts 
statewide, more ground data are necessary. The most economical approach would be to require or 
incentivize 3rd party data providers / aggregators to share PV output and radiometer data in real 
time with the ISO, utilities, and forecast providers. Models should be developed to derive solar 
irradiance values from such ground PV data. The advent of smart meters that can monitor 
residential PV outputs provides an additional avenue to implement this strategy. Also, research on 
sky imager deployments in areas with high PV penetration should be pursued. 

c) DNI Forecasts: Research on radiative transfer in the atmosphere related to direct normal incident 
(DNI) forecasts is necessary. These forecasts should evaluate the effects of cirrus clouds, forest 
fire smoke, dust storms, and urban aerosol air pollution transport on concentrating solar power 
plants in California. 
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1. Solar Forecasting Needs, Market Connection and Stakeholders (Task 1.1) 
This report reviews and evaluates current knowledge and models for forecasting solar 
resources, and recommends ways in which forecasting can be improved. Table S6 lists the 
tasks and corresponding sections in this report. 
 
Table S6: List of tasks for POB248-D76 Task 1. 

Task Section 
1.1. Review the current state of the art in wind and solar 
forecasting in support of California grid operations including a 
review of opaque and transparent commercial models 

Sections 1 and 2. 
Table S2. 

1.2. Summarize and assess sources of real time wind and solar 
data used to calibrate day-ahead and hour-ahead forecasts. 

Section 3.  Table S4. 

1.3. Review data on actual and forecast wind and solar thermal 
plant output ramp rates.  

Section 2.1. and Figs. 
S2a and S2b. Actual 
plant output could not 
be obtained. 

1.4.-1.6: Recommendations for expanded sensor deployment 
and data collection. Recommendations for forecasting at high 
renewable penetration levels. 

Section 4. 

 
Load forecasts have been an integral part of managing electric energy markets and 
infrastructure for many decades. Consequently, experiences, regulations, and planning by 
utilities and independent system operators (ISO) are the dominant consideration for this report. 
Furthermore the rules established by ISOs will impact the economic value of forecasting to other 
stakeholders such as owner-operators. Consequently, in the near-term the primary stakeholder 
to be considered for forecasting needs and plans is the California Independent System 
Operators (CAISO). Secondary stakeholders are utilities who will see greater distributed PV 
penetration on their urban distribution feeders. Currently on a few utilities have mechanisms in 
place to use solar forecasts for local automated response to voltage fluctuations caused by 
solar production.  
 
The market need for better solar power integration and planning tools have been widely 
recognized (e.g. DOE FOA 0085, CEC PON 08-11, CSI RD&D Round 1). CAISO uses the 
following forecasts: The day ahead (DA) forecast is submitted at 0530 prior to the operating day, 
which begins at midnight on the day of submission and covers (on an hourly basis) each of the 
24 hours of that operating day. Therefore, the day ahead forecast is provided 18.5 to 42.5 hours 
prior to the forecasted operating day. The vast majority of conventional generation is scheduled 
in the DA market. The hour ahead (HA) forecast is submitted 105 minutes prior to each 
operating hour. It also provides an advisory forecast for the 7 hours after the operating hour. 
CAISO also is studying in intra-hour forecasts on 5 minute intervals. FERC has issued a Notice 
of Proposed Rulemaking requiring public utility transmission providers to offer all customers the 
opportunity to schedule transmission service every 15 minutes, and requiring providers with 
variable renewables on their systems to use power production forecasting. 
 
Currently, under the CAISO Participating Intermittent Resources Program (PIRP), a 
participating intermittent resource receives special settlement treatment that nets output 
deviations over a month’s period if the resource’s scheduling coordinator submits hour ahead 
forecasts developed by a forecast service provider for that operating hour (de Mello and 
Blatchford, personal communication, 2010). Although the PIRP program does not require them, 
in practice DA forecasts are provided under the same contract. Wind units may participate in DA 
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market however no special settlement treatments apply. Forecasts are integrated in CAISO 
planning, but there is no financial incentive to the forecast providers for accurate forecasts.  
 
At some point PIRP may be modified and renewable generators will be required to participate in 
parts of the regular DA and HA markets. In that case some of the economic benefit and interest 
in forecasting would shift to the owner-operators of renewable power plants which would 
dramatically change the marketplace for renewable forecasting. An example of such a system is 
the Spanish ‘premium tariff’ for the regulation of renewable energy which allows operators of 
power plants to participate directly on the electricity market instead of reverting to flat-rate 
prices. The premium tariff option motivates operators of renewable energy plants to increasingly 
act like managers of conventional plants, selling electricity at the liberalized market. Just like a 
normal market participant, the operator places bids in advance on the DA market and is obliged 
to fulfill them. Thus there is the need for operators of renewable energy plants to be able to 
provide predictable and dispatchable energy in the profitable premium tariff. 
 
Wind forecasting has been important for severe weather events for decades and even wind 
forecasting for renewable energy is a fairly mature field with several major market players. While 
solar radiation forecasting is standard in numerical weather prediction (NWP, the sun’s energy 
is the primary driver of all meteorological processes), the accuracy requirements on solar 
radiation forecasts per se were low and the priority was on forecasting rain and air temperature. 
Consequently there is significant potential for improvements of solar forecasts from NWP. 
 
For solar forecasting different types of solar power systems need to be distinguished (Table S2). 
For solar concentrating systems (concentrating solar thermal or concentrating PV, CPV) the 
direct normal incident irradiance (DNI) must be forecast. Due to non-linear dependence of 
concentrating solar thermal efficiency on DNI and the controllability of power generation through 
thermal energy storage (if available), DNI forecasts are especially important for the 
management and operation of concentrating solar thermal power plants. Without detailed 
knowledge of solar thermal processes and controls, it is difficult for 3rd parties (solar forecast 
providers and CAISO) to independently forecast power plant output. 
 
On the other hand, CPV production is highly correlated to DNI. DNI is impacted by phenomena 
that are very difficult to forecast such as cirrus clouds, wild fires, dust storms, and episodic air 
pollution events which can reduced DNI by up to 30% on otherwise cloud-free days. Water 
vapor, which is also an important determinant of DNI, is typically forecast to a high degree of 
accuracy through existing NWP. Major improvement in aerosol and satellite remote sensing are 
required to improve DNI forecasts. 
 
For non-concentrating systems (i.e. most PV systems), primarily the global irradiance (GI = 
diffuse + DNI) on a tilted surface is required which is less sensitive to errors in DNI since a 
reduction in clear sky DNI usually results in an increase in the diffuse irradiance. Power output 
of PV systems is primarily a function of GHI. For higher accuracy, forecast of PV panel 
temperature are needed to account for the (weak) dependence of solar conversion efficiency on 
PV panel temperature (Table S2). 
 
Table S2: Quantities relevant to solar forecasting. GI: global irradiance. 
Forecast 
Quantity 

Application Primary 
Determinants 

Importance 
to market 

Current 
Forecast Skill 

Global Irradiance  PV Clouds, solar 
geometry 

high medium 

Cell temperature PV GI, air low high 
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temperature, wind 
Direct Normal 
Incident (DNI) 

Concentrating 
Solar Power 

Clouds, aerosols, 
water vapor 

medium Low 

 
 

2. Solar Forecasting Methodologies (Task 1.1) 
2.1. Forecasting Methods  
The purpose of this section is to assess methodologies to forecast solar generation in California, 
to review best practices, and identify available data for validation and calibration of the 
forecasts. 
 
For solar forecasting very different methodologies are preferred depending on the forecast 
horizon (Table S1, Figures S1 and S2d): 

• Persistence forecast is based on current or recent PV power plant or radiometer output 
and extrapolated to account for changing sun angles. Persistence forecasts accuracy 
decrease strongly with forecast duration as cloudiness changes from the current state. 

• Total sky imagery can be used to forecast from real time (nowcast) up to 15-30 minutes. 
by applying image processing and cloud tracking techniques to sky photographs (Fig. 
S1c). The method assumes persistence in the opacity, direction, and velocity of 
movement of the clouds. Irradiance is predicted for the current cloud shadow and then 
the cloud shadow is moved forward in time based on cloud velocity and direction. 

• For satellite imagery (Fig. S1b) the same methods as in total sky imagery are applied. 
Clouds reflect more light from earth into the satellite leading to detection and the ability 
to calculate the amount of light transmitted through the cloud (transmissivity = 1 – 
reflectivity – absorptivity). The lower spatial and temporal resolution causes satellite 
forecasts to be less accurate than sky imagery on intra-hour time scales. Satellite 
imagery is the best forecasting technique in the 1 to 5 hour forecast range. Classical 
satellite methods only use the visible channels (i.e. they only work in day time), which 
makes morning forecasts less accurate due to a lack of time history. To obtain accurate 
morning forecasts, it is important to integrate infra-red channels (which work day and 
night) into the satellite cloud motion forecasts (Perez, et al. 2010). 

• NWP is the best forecasting technique for long time horizons of more than 5 hours. NWP 
models solar radiation as it propagates through the atmosphere including the cloud 
layers represented in the model. Operational National Weather Service models do not 
have the spatial or temporal resolution for accurate HA forecast. Consequently, NWP 
models are probabilistic because they infer local cloud formation (and indirectly 
transmitted radiation) through numerical dynamic modeling of the atmosphere. NWP 
models currently cannot predict the exact position of cloud fields affecting a given solar 
installation (Perez et al. 2009). High-resolution rapid-refresh NWP that are currently 
developed by NOAA and wind forecasters may be able to approach the resolution of 
satellite forecasts (1 km) within a few years and allow the application of high-frequency 
variability techniques (Mark Ahlstrom, Windlogics). 

 
Table S1: Characteristics of solar forecasting techniques. 

Technique Sampling 
rate 

Spatial 
resolution 

Spatial 
extent 

Suitable 
Forecast horizon 

Applicatio
n 

Persistence High One point One Point Minutes Baseline 
Total Sky Imagery 
(Fig. S1c) 

30 sec 10s to 100 
meters 

2-5 mile 
radius 

10s of minutes Short-term 
ramps, 

regulation 
GOES satellite 15 min 1 km US 5 hours Load 
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imagery (Fig. S1b) following 
NAM weather 
model (Fig. S1a) 

1 hour 12 km US 10 days Unit 
commitment 

 

 

 

Figure S1a: Map of the forecast GHI [W m-

2, colorbar] in March 2010 at midday from 
the North American Mesoscale model 
(NAM). 

Figure S1b: Map of the forecast GHI [W 
m-2, colorbar] for San Diego on January 
24, 2009 at 1245 PST using the GOES-
SUNY satellite model. 

  
Figure S1c: Cloud motion vectors (right) and sky image (left) at the UC San Diego 
campus on August 19, 2009 at 1431 PDT. 
 
Statistical methods can be applied to correct for known deficiencies of different forecasting 
methods through corrections for known model biases or automated learning techniques. 
Examples are modeled output statistics (MOS), autoregression techniques, and artificial neural 
network (ANN). For example, MOS uses statistical correlations between observed weather 
elements and climatological data, satellite retrievals, or modeled parameters to obtain localized 
statistical correction functions. This allows, for example, for the enhancement of low-resolution 
data by considering local effects (e.g. topographic shading) or for correcting systematic 
deviations of a numerical model, satellite retrievals, or ground sensors. A disadvantage of 
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statistical methods is the large amount (typically at least one year) and accuracy of 
measurement data needed to develop statistical correlations separately for each location. This 
means that MOS-based forecasts are not immediately available for larger areas or for locations 
without prior measurements, such as most non-urban solar power plants in the California. 
 
2.2. Evaluation of Numerical Weather Prediction Solar Forecasts in California 
For Task 1.3 we conducted an analysis of the intra-day solar forecast skill of the current 
operational NWP model – the North American Mesoscale (NAM) model for February to June 
2010 using California Irrigation Management Information System (CIMIS) GHI measurements. 
NAM provides hourly forecast up to 72 hours ahead on a 12 km grid within the Continental US.  
 
A 24 hour persistence forecast was more accurate forecast in clear sky conditions than in 
overcast conditions (Fig. S2b). This indicates that clear conditions are persistent, but during 
times of transitional weather patterns P is inaccurate. Generally, P is an inaccurate method for 
more than 1 hour ahead forecasting and should be used only as a baseline forecast for 
comparison to more advanced techniques. 
 
The original NAM forecast for GHI consistently over-predicts solar irradiation during clear sky 
situations, but under-predicts GHI for cloudy conditions (Fig. S2c). On average, these bias 
errors can exceed 25%.  The consistent errors in NAM motivate application of a bias correction, 
termed model output statistics (MOS), as a function of solar zenith angle and clear sky index. 
Through the use of MOS, the bias error was eliminated and the root mean square error (RMSE) 
was significantly improved (Fig. S2b). The RMSE for the corrected forecasts ranges from 25% 
under very cloudy conditions to 8% under clear conditions. 
 

 
 

Fig. S2a: Camarillo, CA original NAM 
forecast N and MOS corrected NC 
forecasts compared to CIMIS ground 
data on Feb 13, 2010. Blue: Original 
NAM forecast, dashed blue: bias 
corrected NAM forecast, black: CIMIS 
measurement. The MOS reduces 
forecast error by nearly 200 W m-2 at 
mid day. 

Fig. S2b: Relative root mean square error (y-
axis, normalized by 1000 W m-2) of different 
forecasts as a function of total cloud cover (x-
axis) for February-June 2010 in California. 
Blue solid: original NAM model; blue dashed: 
bias corrected NAM model; red dashed: 
persistence forecast; black: clear sky forecast. 
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Figure S2c: Relative mean bias error [%/100, colorscale] of NAM forecast N as a 
function of solar zenith angle (θ) and forecasted clear sky index (kt*) from February to 
June 2010 compared to CIMIS measurements.   
 

 
Fig. S2d: Root mean square error (RMSE) of different solar forecasting techniques 
obtained over a year at seven SURFRAD ground measurement sites (from Perez et al. 
2010). The red line shows the satellite nowcast for reference, i.e. the satellite ‘forecast’ 
for the time when the satellite image was taken. Cloud motion forecasts derived from 
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satellite (yellow and white lines) perform better than numerical weather prediction 
(NDFD) up to 5 hours ahead. Numerical weather prediction has similar accuracy for 1 
hour to 3 days ahead. 
 
 

2.3. Literature Survey of Forecasting Applications 
2.3.1. Peer-reviewed research 

Table A1 in the appendix provides an overview of studies validating solar forecasting methods. 
The most extensive body of research is from Germany by the groups of Prof. Heinemann at the 
University of Oldenburg and Dr. Schroedter-Homscheidt at the German Aerospace Agency. No 
studies exist that examine forecasts for California, partly because there is no high-quality 
SURFRAD measurement site in California for forecast validation. A comprehensive study of 
forecasts at seven SURFRAD sites in the US (Perez et al. 2010, Fig. S2d) is probably generally 
applicable to most inland areas of California. The coastal California meteorology poses unique 
challenges and forecast models will have to be independently validated there. Generally, 
published results of forecast error have to be examined with care. The forecast error strongly 
depends on the amount and variability of cloudiness, making comparison between studies 
performed in different seasons and climates difficult. Nevertheless, a few general conclusions 
can be drawn from the literature survey: 

a. Surprisingly, significant bias errors (i.e. persistent high or low deviations) exist in NWP 
models. However, these errors could be corrected through MOS. NWP model errors 
should be carefully examined in California. 

b. Only for clear sky conditions can accurate forecasts be obtained with as low as 6% 
RMSE. 

c. For all conditions (cloudy and clear) all forecasts that are compared to ground data have 
RMSEs of at least 20% but as large as 40-80% for cloudy conditions. The main reason 
for these large errors is the difference in spatial scale between a satellite pixel or NWP 
model grid cell and the measurement station. Unless local techniques with a finer 
resolution are employed such as sky imagery, the forecast error will always be large, 
especially for sub-hourly intervals and cloudy conditions. 

d. DNI forecasts are associated with about twice the RMSE than GHI forecasts. 
 
The recommendations for the best solar forecasting approach are well summarized by 
Schroedter-Homscheidt et al. (2009), who propose to use 

• deterministic NWP schemes in the day-ahead market with ensemble prediction 
technologies for GHI. Post-processing of NWP should be used to derive hourly DNI from 
NWP. 

• aerosol optical depth modelling from air quality applications in the day-ahead prediction 
(for DNI). 

• nowcasting of cloud fields and irradiance from satellites. Cloud motion vector forecasting 
including both visible and infrared channels should be used for the 1 to 5 hour forecast 
horizon (satellite-based aerosol added for DNI). 

• ground measurements for intra-hour forecasts. 
 
References: 
Bacher, P., H. Madsen, H. A. Nielsen, Online short-term solar power forecasting, Solar Energy 
83:1772–1783, 2009 
Bofinger, S., G. Heilscher, Solar radiation forecasts based on ECMWF and model output 
statistics. Technical Report ESA/ENVISOLAR, AO/1-4364/03/I-IW, EOEP-EOMD. 
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Breitkreuz, H., M. Schroedter-Homscheidt, T. Holzer-Popp, S. Dech, Short-Range Direct and 
Diffuse Irradiance Forecasts for Solar Energy Applications Based on Aerosol Chemical 
Transport and Numerical Weather Modeling, JAMC, 48:1766, 2009 
Hamill, T.M., T. Nehrkorn, A Short-Term Cloud Forecast Scheme Using Cross Correlations, 
Weather and Forecasting, 8(4):401-411 
Hammer, D. Heinemann, E. Lorenz, B. Luckehe, Short-term forecasting of solar radiation: a 
statistical approach using satellite data, Solar Energy,(67):1–3, pp. 139–150, 1999 
Heinemann, D. E. Lorenz, and M. Girodo, “Forecasting of Solar Radiation,”in Solar Energy 
Resource Management for Electricity Generation from Local Level to Global Scale, E. Dunlop, 
L. Wald, and M. Suri, Eds. Commack, NY: Nova, 2006, pp. 83–94. 
Jensenius, J.S., G.F. Cotton, The development and testing of automated solar energy 
forecasts based on the model output statistics (MOS) technique, Proc. 1st workshop on 
terrestrial solar resource forecasting and on the use of satellites for terrestrial solar resource 
assessment, Newark, 1981, American Solar Energy Society, 1981. 
Lorenz, E., J. Hurka, D. Heinemann, H.-G. Beyer, Irradiance Forecasting for the Power 
Prediction of Grid-Connected Photovoltaic Systems, IEEE J. of Selected Topics in Applied Earth 
Observations and Remote Sensing, (2):1, 2009 
Modica G.D., R. d'Entremont, E. Mlawer, and G. Gustafson, Short-range solar radiation 
forecasts in support of smart-grid technology, American Meteorological Society Conference, 
2010 
Perez, R., K. Moore, S. Wilcox, D. Renne, A. Zelenka, Forecasting solar radiation – Preliminary 
evaluation of an approach based upon the national forecast database, Solar Energy 81:809–
812, 2007 
Perez R., S. Kivalov, A. Zelenka, J. Schlemmer and K. Hemker Jr., Improving The Performance 
of Satellite-to-Irradiance Models using the Satellite’s Infrared Sensors. Proc., ASES Annual 
Conference, Phoenix, Arizona, 2010 
Perez R, S Kivalov, J Schlemmer, K Hemker Jr., D Renne, TE Hoff, Validation of short and 
medium term operational solar radiation forecasts in the US, Solar Energy, in press, 2010. 
Remund, J., R. Perez, E. Lorenz, Comparison of solar radiation forecasts for the USA, 2008 
European PV Conference, Valencia, Spain 
Schroedter-Homscheidt, M., C. Hoyer-Klick, E. Rikos, S. Tselepsis, B. Pulvermüller, 
Nowcasting and forecasting of solar irradiance for energy electricity generation, SolarPACES 
2009 
Wittmann, M., H. Breitkreuz, M. Schroedter-Homscheidt, M. Eck, Case Studies on the Use of 
Solar Irradiance Forecast for Optimized Operation Strategies of Solar Thermal Power Plants, 
IEEE J. of Selected Topics in Applied Earth Observations and Remote Sensing, (1):1, 2008 
 
 

2.3.2. Solar forecast providers 
For this section solar forecast providers were invited to describe their forecasting model, 
quantify forecast accuracy, and comment on research needs. Generally there are two camps of 
solar forecast providers. Especially established wind forecast providers apply techniques 
developed for wind forecasting to solar, which implies running dedicated mesoscale NWP 
together with machine learning (MOS, ANN) techniques to nudge the forecast to a particular 
site. Providers specializing in solar forecasts tend to use (government supplied) NWP data for 
DA forecasts, but use satellite cloud fields for intra-day or HA forecasts. We believe that for HA 
forecasts in the coming 3 years the satellite-based method has the greatest maturity, 
highest spatial resolution, and accuracy. However, as NWP approaches smaller grid 
sizes and NWP and mesoscale models are improved to assimilate satellite data, NWP 
may become superior to satellite-based methods. For DA forecast NWP is and will always 
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be the most promising forecasting method. A review of models from different providers 
follows (in alphabetical order): 
 
3Tier does not provide details on solar forecasting capability on its website, but since it uses 
satellite-based technologies for its solar resource assessment it is likely to possess cloud 
forecasting capability. 3Tier was invited to comment, but has not responded. 
 
AWS Truepower (AWST): “The production of forecasts in the AWST solar forecasting system 
is based on the dynamic weighting of an ensemble of forecasts generated by a combination of 
physics-based (also known as Numerical Weather Prediction (NWP)) models, advanced 
statistical procedures and cloud pattern tracking and extrapolation techniques.   The individual 
members of the ensemble are weighted for each look-ahead time period (e.g. 1–hour, 2-hours 
etc.) according to their relative performance in a relevant sample (e.g. a rolling period prior to 
the forecast time or a set of cases that are similar to the current weather regime).  The 
independent weighting for each look-ahead period allows the system to shift from heavy 
reliance on one method for a particular look-ahead interval to a heavy weighting of another 
method for a subsequent look-ahead interval according to the statistical performance 
characteristics of each method for each look-ahead interval.  Currently, the AWST cloud pattern 
tracking procedure is under development and not yet used as part of the operational ensemble.  
AWST expects this approach to be added to its operational ensemble once development and 
testing is completed shortly. 

The current operational version of the AWST’s solar forecasting system consists of four major 
components. The first is the generation of a set of mesoscale NWP simulations using the 
MASS, WRF and ARPS models. These models are run from several sets of initialization and 
boundary conditions to generate an ensemble of mesoscale NWP forecasts.  Most of the 
simulations employ the standard government-center 6-hour NWP update frequency.  However, 
a small subset are operated in a rapid update cycle mode, which initializes a new simulation 
every 1 or 2 hours using the latest available data including synthetic moisture data inferred from 
cloud patterns in satellite images.  This is intended to improve the short-term NWP prediction of 
cloud patterns and characteristics and is still being refined. 

The second phase of the forecast production process employs statistical models such as 
multiple linear regression, Artificial Neural Networks (ANN) and support vector regression to 
create an ensemble of forecasts of irradiance and other relevant parameters (such as panel 
temperature).  The input into these models includes the output from the NWP simulations, 
recent time series data from the forecast site and off-site locations and in the future the output 
from the cloud pattern tracking schemes.  The statistical models serve to correct system errors 
in the NWP simulations as well as to adjust the NWP forecasts to account for recent trends 
revealed by the on-site or off-site measurement data.  The output is an ensemble of forecasts 
for the site. 

The third major component is the generation of a either a (1) deterministic forecast by 
statistically weighting members of the ensemble according to their performance in a relevant 
training sample or (2) a probabilistic forecast based on quantile regression using information 
about the dispersion of the forecasts in the ensemble and also trained on a relevant training 
sample.  

The fourth component is the transformation of forecasted irradiance and other meteorological 
parameters to power output power output values by using a statistical or physics-based solar 
plant model.  This can be done prior to or after the construction of the ensemble composite (i.e. 
applied to the individual members of the forecast ensemble or the ensemble composite 
predictions of the meteorological parameters).” 
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Provided by John Zack, AWS Truewind, john@meso.com  
 
Clean Power Research offers the SolarAnywhere® solar resource assessment and solar 
forecasting service. Hourly GOES satellite images are processed using the most current 
algorithms developed and maintained by Dr. Richard Perez at the University at Albany (SUNY). 
The algorithm extracts cloud indices from the satellite's visible channel using a self-calibrating 
feedback process that is capable of adjusting for arbitrary ground surfaces. The cloud indices 
are used to modulate physically-based radiative transfer models describing localized clear sky 
climatology. Near term irradiance datasets are produced hourly and are accessible via the 
SolarAnywhere website or programmatically via web services. 
 
SolarAnywhere provides hourly forecasts up to 7 days in advance using a cloud motion 
algorithm for short term forecasts and a NWP algorithm for longer term forecasts. The transition 
point between the short term and long term forecasts is automated in order to produce a unified 
dataset every hour containing 1 to 168 hours of forecast irradiance for each location. The 
accuracy of the forecast technique is reviewed in several papers Perez et al. (2009, 2010) 
 
Clean Power Research and SUNY are in the process of increasing the spatial resolution from 
10km to 1km and temporal resolution from one hour to one minute as part of the California Solar 
Initiative Advanced Modeling and Verification for High Penetration PV study. Other 
improvements in the near term include the imminent release of the v3.0 SUNY algorithm which 
will incorporate the four infra-red channels from the GOES satellites. Access to the new IR 
channels will enable early morning cloud motion forecasts during a time period that currently 
has an inadequate visual image history. Incorporation of the infra-red channels will achieve 
significant improvements in high albedo locations by enabling better differentiation between 
naturally highly reflective locations and intermittent snow cover. 
 
Garrad Hassan is an established wind forecast provider. The entry into the solar market will 
likely be based off of existing NWP and mesoscale modeling capabilities. Garrad Hassan was 
invited to comment, but has not responded. 
 
Green Power Labs (http://www.greenpowerlabs.com/services_forecasting.html) 
“provides solar radiation and power production monitoring and forecasting for utilities, 
independent system operators and solar power producers. The technology developed by Green 
Power Labs for broadband modeling of solar radiation at the Earth’s surface is based on the 
analysis of GOES satellite visible spectrum images. The model software is implemented as 
plug-in for ESRI’s ArcGIS9.3 suite. 
 
Solar radiation monitoring is based on a physical model that relates the satellite-derived Earth-
atmospheric reflectivity from the visible spectrum channel of the satellites to the transmissivity of 
the atmosphere. The model calculates the sun’s position, air mass and extraterrestrial radiation 
and, in conjunction with digital databases of surface elevation, Linke turbidity data, produces 
estimates of clear-sky global radiation at the Earth’s surface. The amount of solar radiation 
reflected by clouds is determined from the satellite-derived data. The resulting data of overcast 
global radiation at the Earth’s surface are produced at a resolution of 1x1 km at the satellite’s 
nadir, at 30 minute intervals. The SolarSatData results are adjusted to the site-specific 
conditions using World Meteorological Organization - grade weather monitoring stations initially 
set up at solar power generation sites. 
 
Solar radiation forecasting works on a basis of physical relationship between cloud cover and 
solar radiation. The forecast system is based upon the cloud cover forecasts from two 
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Numerical Weather Prediction systems. These are the high resolution Nonhydrostatic 
Mesoscale Model (NAM) provided by the National Oceanic and Atmospheric Administration 
(NOAA) National Centers for Environmental Prediction, covering North America and adjacent 
waters at 10 km resolution, and the Global Environmental Multiscale model provided by 
Environment Canada at 15 km resolution in its regional configuration. The solar radiation and 
solar energy generation system performance forecasts for the next 48 hours at hourly intervals 
are produced daily from the 00Z and 12Z runs and are made available online. GPLI solar 
radiation forecasts are well correlated with ground observations. 
 
Solar power generation forecasting utilizes recognized models of solar power generation 
technologies. The service currently offers PV power generation forecasting for utility-scale and 
distributed systems as well as spatial aggregation of solar power generation in utility areas of 
service. ” (Tony Daye, Senior Manager, Green Power Labs Inc., 
tony.daye@greenpowerlabs.com)	  
 
Solarcasters (http://www.solarcasters.com/dayahead.htm, http://www.solarcasters.com/hourahead.htm, 
http://www.solarcasters.com/minuteahead.htm):  
“offers a line of technical and engineering support services for utility-scale solar power 
generation.  The line includes forecast services for the day-ahead (DA) and hour-ahead (HA) 
time frames. A service for forecasts in the 0-60 minute time frame is also under development. 
 
SolarCasters DA forecasts predict irradiance and resulting power production in 3-hour average 
time blocks.  Forecasts are made twice each day for the following 24-hour period (...).  
SolarCasters provides both irradiance forecasts and plant-specific power generation forecasts 
using its TRNSYS-based plant simulation software.  Integration of these forecasts with electrical 
dispatch master controls systems from Siemens and GE is underway. 
 
DA forecasts are based primarily on numerical weather prediction (NWP) with proprietary 
algorithms used to forecast cloud cover based on NWP results.  The forecasts also use 
proprietary radiative transfer models to predict the irradiance reaching the ground.  A proof-of-
concept study at a desert location generated mean average errors (MAE) of around 1% and an 
RMS error of 11%.  Forecasting in a humid semi-tropical environment proved more difficult with 
a MAE of -7% (the model under predicts the observed) and an RMS error of 38%. 
 
HA forecasts predict 1-hour average power production for the 2-5 HA time frame and are 
generated using a series of proprietary algorithms based on analysis of satellite images, 
together with the SolarCasters radiative transfer modeling.  The MAE at the desert site in this 
time period was typically 2% with 12% RMS error.  Again the semi-tropical site proved more 
problematic with MAE of -8% and RMS errors near 25%. 
 
The proof-of-concept studies were conducted on short time series and the results presented 
here may not be representative.  All forecast results are expected to improve when site-specific 
corrections (MOS) derived from long-term observations are applied. 
 
The forecast technology for the 0-60 minute time frame involves on-site imaging equipment and 
the use of geometric transforms to track and predict cloud-related transients affecting all or only 
a portion of a generating site.  An X-band radar system for predicting cloud cover in this time 
frame has also been tested and may prove useful for the largest generating sites.  Neither of 
these technologies has yet been subject to a proof-of-concept.” 
Provided by: Steve Ihnen, CTO, SolarCasters, Inc., Redmond, WA  98052, o. (425) 736-4631, 
steve@solarcasters.com  
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Solardatawarehouse.com is an aggregator and data provider of solar irradiance data from 
3600 stations throughout the US. Solardatawarehouse also offers a forecast product based on 
the dense ground measurements, airport METAR observations, and National Digital Forecast 
Database data. “The forecasting model has two separate components: One predicts solar 
radiation based on meteorological observations, while the second learns to recognize seasonal 
climate patterns at the site. Outputs from the two models are combined to forecast solar 
radiation one hour and three hours into the future. The models are adaptive and capable of self-
learning based on the training data presented them.” (James Hall – JHtech, (719) 748-5231, 
JamesHall@jhtech.com). 
 
Windlogics has been developing expertise in solar resources and forecasting (e.g. Ahlstrom 
and Kankiewicz, Utility-scale PV variability workshop, 2009; Kankiewicz et al. American Solar 
Energy Society conference, 2010) and may be entering the market with new solar forecasting 
products soon. 
  
 
3. Data Sources for validation and calibration (Task 1.2) 
Solar forecasts from NWP or satellite models are of limited accuracy. Clouds are not resolved or 
modeled poorly in NWP. Satellites can observe large clouds directly, but they measure only the 
light reflected by clouds, atmosphere, and ground. Solar irradiance reaching the ground has to 
be modeled using various assumptions. Consequently, accurate data from ground stations is 
required to validate and calibrate NWP and satellite model forecasts.  
 
In Table S4 sources of real time solar data are listed. Unlike for wind, there is an extreme 
shortage of publicly available ground based solar irradiance measurements. The following 
observations apply: 

• There are only three stations in California (NOAA-ISIS at Hanford and NREL-MIDC in LA 
and Rancho Cordova) that provide publicly available, measured, real-time data. 
However, due to lack of funding and/or supervision even for these stations data quality 
is a concern (Manajit Sengupta, NREL, personal communication). 

• The California Irrigation Management Information System (CIMIS) measurement 
network covers the entire state at decent resolution, but data are only available in hourly 
intervals and are only downloaded 1x / day in the evening making these data largely 
useless for solar forecasting applications. 

• CAISO also presently has very little solar generation data, since many solar power 
plants have gas-fired backup generators which are not separately metered. 

• GOES satellite data is currently the most promising resource due to real-time availability, 
large coverage, and decent accuracy. 

• A powerful, but so far untapped resource are the more than 2000 metered PV systems 
around the state. Since PV power output is near linearly related to solar irradiance, 
these systems effectively act as distributed solar irradiance sensors. If the 
measurements could be linked to a national database in real-time, they would be a very 
valuable and economical resource for solar forecasting. 

 
Also note, that recently NOAA and NREL (Michalsky et al. 2010) have proposed the upgrade of 
Climate Reference Network (CRN) to measure GHI, DNI, and DIF. However, with only 7 CRN 
stations in California these measurements would not be sufficient in their spatial density for 
California’s solar forecasting needs. NOAA estimates that the cost of expanding the CRN 
network would be $1.5 M for the 7 sites in California. NREL also runs the SOLRMAP initiative to 
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provide quality control for 3rd party installed irradiance sensors, but the data remain proprietary 
to the operator. 
 
Table S4: Available irradiance measurements in California. ISIS: Integrated Surface Irradiance 
Study; CIMIS: California Irrigation Management Information System; ASOS: Automated Surface 
Observation System; PBI: Performance Based Incentive; MIDC: Measurement and 
Instrumentation Data Center. 

Name Type Resolution / # 
of stations 

Time 
step 

Real Time? Accuracy for 
GHI 

GOES Satellite 1 km 15 min Yes Low 
NOAA ISIS Ground GHI, 

DNI, DIF 
1 (Hanford) 3 min Yes Medium – 

High 
NREL MIDC Ground GHI, 

DIF 
2 (LA, Rancho 

Cordova) 
1 min Yes (30 min) Medium – 

High 
CIMIS Ground GHI 134 1 h No (1x / day 

download) 
Medium 

NOAA 
ASOS 

Cloud height 
and density 

82 (airports) 10 min Yes Low 

CSI PBI PV output, 
some GHI 

>2070 15 min No, NDA 
required1 

Low 

UCSD Sky 
Imager 

Sky Image 50 m 30 sec Yes Low 

 
 

4. Discussion 
4.1. Evaluation of forecast accuracy 
4.1.1. Error Metrics 
Due to the binary nature of solar radiation (cloudy or clear) the choice of error metric is very 
important for the evaluation of solar forecast models. The root mean square error (RMSE) 
metric is problematic as it is dominated by large errors. Thus if a forecast model is usually 
correct but occasionally off by a large amount it may score worse than a model that is always 
slightly off but never way off. We recommend adding the mean absolute error (MAE) or mean 
absolute percentage error (MAPE) as a standard evaluation metric since it is less sensitive to 
large errors. 
 
4.1.2. Economics versus Irradiance 
All forecast evaluations (given for reference in Table A1) calculate the forecast error in W m-2 or 
% of solar irradiance. This has the advantage of comparability, but is not the most economically 
relevant metric. For example, a forecast error during peak load is likely both economically and 
operationally more significant than an error during off-peak times. To quantify the economic 
value of radiation forecasts and forecast errors we recommend that researchers use the CAISO 
OASIS site which continually updates prices in the HA and DA market.  
 

4.2. Single site versus Regional Forecasts 
Solar forecast quality dramatically improves when several sites are aggregated over a region 
(e.g. Lorenz et al. 2009), because average cloudiness in a region can be forecast more 
accurately than cloudiness at a particular site. Since shorter time-scale fluctuations in power 
output are uncorrelated across sites only a few miles apart (i.e. the clouds responsible for these 
fluctuations are usually smaller than the distance between sites) aggregation of power output 
                                           
1 May be available real-time in the future through smart meters. 
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from several sites mitigates the issue of large ramps over short time-scales. The larger the 
forecast region and the larger the number of sites within that region, the less important small 
scale variability becomes. For example, Mills and Wiser (2010) showed that 1 minute 
fluctuations are uncorrelated over distances as small as 20 km meaning that the relative 
variability standard deviation decreases with the square root of the number of sites – 4 sites 
means half the relative variability. They concluded that the increase in spinning reserve costs for 
solar are smaller than those for wind. 
 
In the current market, prices are set at each node in the electric grid. Consequently, the 
economic value of forecasting is primarily in localized forecasting for a particular solar plant or 
an urban distribution feeder. However, for other applications such as congestion management 
and grid operation on larger scales, often aggregate or ensemble forecast are sufficient or 
desirable.  
 
Likewise for solar forecasting in urban areas, the PV sites are distributed across different 
rooftops and aggregate forecasts are of greater relevance than forecasts for individual PV 
systems. 
 

4.3. Recommendations 
 

a) Type of solar forecast: GOES satellite and NWP data are the most accurate solar forecast 
sources for hour-ahead (HA) and day-ahead (DA) forecasts, respectively. An overwhelming 
body of research (Section 2.2) shows that solar forecast based on satellite models 
outperform NWP forecasts up to around 5 hours ahead. In turn, persistence forecasts give 
similar results as satellite forecast up to 1 hour ahead. 
 
Mesoscale Numerical Weather Prediction (NWP) 
Why: In the long term as computing power and models improve, NWP will be the most 
promising tool to forecast solar irradiance. This research would enable wind forecast 
providers to adapt their existing products to solar forecasting and quantify the potential 
improvement in accuracy. 
What to do: Research should be conducted on the forecast skills of operational numerical 
weather prediction models for California and the applicability of mesoscale meteorological 
models to locally enhance forecast skill. 
Who can do it: In collaboration with NREL (Bill Mahoney) and NOAA scientists (Stan 
Benjamin), California researchers should conduct modeling and evaluation studies for 
California. Scripps Institution of Oceanography researcher Masao Kanamitsu has significant 
experience in mesoscale meteorological modeling in California. 
 
Conduct a forecast competition: CAISO has successfully conducted a wind forecast 
competition in 2008/2009 and would like to repeat a similar project for solar forecasting. Any 
forecast providers could bid and provide forecasts for a few representative sites to the ISO 
for one year. The following parameters should be forecast: Global Horizontal Irradiance, 
Diffuse Horizontal Irradiance, Direct Normal Irradiance, Global (diffuse + direct) plane of 
array irradiance for fixed tilt PV, PV panel temperature for fixed tilt PV mounted onto a 
flat area, Global (diffuse + direct) irradiance for a two-dimensional tracking CSP plant. 
The California Solar Energy Collaborative (CSEC) could provide independent analysis of 
such a dataset for CAISO to evaluate operational forecast skill for different providers. Similar 
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to a previous study on wind forecasting, forecast providers would need to be reimbursed for 
these services by CAISO and their input to the design of such a study should be sought.2 
Why: No peer-reviewed studies exist that evaluate solar forecast performance for California. 
With its unique microclimates California presents a significant challenge to forecast models. 
What to do: Contact CAISO’s James Blatchford as to the timeline and support required to 
conduct such a study.  
Who can do it: CSEC has the experience, knowledge, and independence to work with 
CAISO in planning, execution, and analysis of such a study. 

 
b) Ground measurement networks: More ground measurements of solar irradiance would 

improve HA and intra-hour forecasts. Ground measurements of GHI (and DNI for 
concentrating plants) should be (and currently are) required by CAISO for large solar farms 
(similar to wind measurements in the PIRP program). However, we believe that establishing 
and maintaining a separate dedicated network of solar irradiance sites in California would not 
be the most economical approach to improving forecast skill. High-quality irradiance sites are 
labor intensive to install and operate as most DNI sensors require daily cleaning. E.g. NOAA 
estimates that the cost of upgrading the Climate Reference Network to conform to solar 
resource and forecasting needs would be $1.5M for just 7 sites in California. Yet the high 
accuracy does not necessarily translate to reduced forecast error since clouds are spatially 
localized and their detection and prediction would require extremely dense networks. No 
peer-reviewed research study exists that shows advantages of non-local measurements 
networks for solar forecasting. However, if other energy meteorology networks were 
established (e.g. for wind forecasting for which the advantages of such networks are more 
obvious), it would be useful and economical to ‘piggyback’ off of these sites and install low-
maintenance GHI silicon pyranometers. 
 
The most economical approach to enhance ground measurements would be to require 
and/or incentive 3rd party data providers (e.g. SunPower, Energy Recommerce, Fat Spaniel) 
to share their data in real time with the ISO and/or solar forecast providers which – under 
NDAs – could operate a data warehouse for utilities, and forecast providers. The cost to 
sharing such data is minimal as the infrastructure is in place such as more than 2000 
sensors, meters, telemetry, and databases (Table S4). The only change to the current mode 
of operation is that database access would be provided in real-time instead of sending 
monthly summaries to CSI as is done currently. This approach would be expected to cost a 
fraction of a new station network and could be operated by CAISO and the energy industry in 
an open market. The advent of smart meters that can monitor residential PV outputs 
provides an additional avenue to implement this strategy. 
 
Why: There is a lack of solar irradiance measurements in California. 
What to do: Research should be funded by the California Solar Initiative or PIER or both in 
collaboration to develop models to derive solar irradiance values from ground PV data and 

                                           
2 John Zack from AWS Truepower comments that “A rigorous competitive evaluation of forecast providers is 
fundamentally a good idea to establish level of performance expectations and an estimate the variation in forecast 
performance among providers.  However, it is important to realize that the information obtained from such a study will 
be limited by the design of the study.   A particular method may perform very well for one objective but not as well for 
another. (e.g forecasting of routine events vs anomalous events) and some methods may perform much better if 
certain types of data are available but may not have any advantage if those data are not available.  The danger is that 
conclusions derived from a specific set of forecast evaluation conditions will be extrapolated to general conclusions, 
which may to lead to erroneous decisions on how to best address other forecasting objectives.  We have 
encountered this issue in many of our wind forecasting applications.” 
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demonstrate the potential and feasibility of such an approach to improve the accuracy of 
solar forecasting. 
Also research on total sky imager (Figure S1c) deployments in areas with high PV 
penetration should be pursued. Sky imagers can survey a large area from a single site. The 
reduced accuracy in the irradiance measures determined by a sky imager (compared to a 
pyranometer) will be more than overcome by the spatial density and cloud tracking capability 
of the observations. 
Who can do it: Kleissl is conducting Total Sky Imager work at UC San Diego. For the data 
aggregation work, collaborators with a background in data assimilation would be useful. 
 

c) Forecast aerosol optical depth for DNI: Depending on the expected market share of 
concentrating solar power (CSP) plants in California, research should be conducted on DNI 
forecasts examining the integration of aerosol models into weather forecast models. These 
forecasts should especially be able to consider cirrus clouds, forest fire smoke predictions, 
dust storms, and urban aerosol air pollution transport that may affect CSP in California.  
Why: Aerosols can significantly decrease DNI which could impact CSP plants. 
What to do: Evaluate satellite remote sensing products of aerosol optical depth and their 
assimilation into solar forecasting. 
Who can do it: Since aerosols may not be detectable on the ground, satellite remote 
sensing techniques hold the most promise, especially if coupled with NWP. A joint NASA-
NOAA-EPA effort seems to be the most advanced 
(http://www.star.nesdis.noaa.gov/smcd/spb/aq/). With the exception of work in Germany 
(Breitkreuz et al. 2009), prior AOD work is focused on air quality applications. Additional 
research is required to determine the skill in determining solar irradiance. 
 

 
 
 
5. Glossary 
 
The NREL ‘Glossary of Solar Radiation Resource Terms’ defines the following: 
 
AOD: Aerosol Optical Depth: AOD is the "extinction per unit path length due to aerosols 
alone". Extinction of solar radiation occurs due to water vapor, ozone, mixed gases, and 
'equivalent extinction' represented by Rayleigh scattering of atmospheric molecules, and what is 
'left over' is the aerosol extinction. 
 
DIFF: Diffuse Sky Radiation (or Diffuse Horizontal Irradiance): The radiation component 
that strikes a point from the sky, excluding circumsolar radiation. In the absence of atmosphere, 
there should be almost no diffuse sky radiation. High values are produced by an unclear 
atmosphere or reflections from clouds. 
 
DNI: Direct Normal Irradiance: Synonym for beam radiation, the amount of solar radiation from 
the direction of the sun. 
 
GHI: Global Horizontal Irradiance: Total solar radiation; the sum of direct, diffuse, and ground-
reflected radiation; however, because ground reflected radiation is usually insignificant 
compared to direct and diffuse, for all practical purposes global radiation is said to be the sum of 
direct and diffuse radiation only. 
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Irradiance: The rate at which radiant energy arrives at a specific area of surface during a 
specific time interval. This is known as radiant flux density. A typical unit is W/m2. 
 
MBE: Mean Bias Error: Metric to compare the b. MBE can be negative (forecast is too small, 
on average), zero (forecast has no bias), and positive (forecast is too large, on average). 
 
Mesoscale: Scale of numerical weather prediction models with domain sizes on the order of 
1000 km and grid cells on the order of 1 to 5 km. Mesoscale models provide more fine-grained 
information than macroscale models (which predict weather for the entire US or even the globe), 
but are limited in the area over which they forecast. 
 
MOS: Model Output Statistics: Statistical method to correct model errors in postprocessing 
based on predetermined bias errors. 
 
NWP: Numerical Weather Prediction: Weather forecasting using computer models. 
 
PV: Photovoltaic: Technology for converting sunlight directly into electricity, usually with 
photovoltaic cells. 
 
Pyranometer: An instrument with a hemispherical field of view, used for measuring total or 
global solar radiation, specifically global horizontal radiation; a pyranometer with a shadow band 
or shading disk blocking the direct beam measures the diffuse sky radiation, as is illustrated in 
the picture below. A picture of the Eppley PSP pyranometer is included in the PSP definition 
above. 
 
RMSE: Root Mean Squared Error: Metric to compare forecasts to actual data. 
 
Rotating Shadow Band Radiometer: An instrument that determines total solar radiation and 
diffuse sky radiation by periodically shading the total sky sensor from the sun with a rotating 
shadow band. Below is a picture of a rotating shadow band radiometer at the Solar Radiation 
Research Laboratory. The curved black shadowband at the right of the instrument is at rest; 
once every minute, it rotates 180° to obscure the sun for a few seconds, then returns to its 
resting position. 
 
Scattered Radiation: Radiation that has been reflected from particles, disrupting the original 
direction of the beam 
 
Silicon Sensor: A photovoltaic cell that is being used to measure solar irradiance. Because its 
spectral response is not as exact as that of thermopile instruments, it has a higher uncertainty. 
 
Solar Concentrator: A solar collector that enhances solar energy by focusing it onto a smaller 
area through mirrored surfaces or lenses 
 
Solar Thermal Electric: Technology for using the sun's energy to produce steam to run 
turbines that generate electricity. 
 
Transmittance: The fraction or percent of a particular frequency or wavelength of 
electromagnetic radiation that passes through a substance without being absorbed or reflected. 
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Turbidity: A measure of the opacity of the atmosphere. A perfectly clear sky has a turbidity of 0, 
and a perfectly opaque sky has a turbidity of 1. Turbidity is affected by air molecules and 
aerosols. 
 
Zenith Angle: The angle between the direction of interest (of the sun, for example) and the 
zenith (directly overhead). 
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Appendix 
Table A1: Review of studies for solar energy forecasting. Modica et al. (2010) showed first results for forecasts with sky imagery. 
NDFD: National Digital Forecast Database (National Weather Service, NOAA, Washington, DC); ECMWF: European Center for 
Medium-range Weather Forecasting; Meteosat: Geostationary european satellite. 
 

Study Location Quan 
tity 

Forecast 
Source 

Avera-
ging 

Interval 

Time 
Horizon 

Error 
Metric 

Error Value Comment 

Schroedter 
et al(2009), 
Breitkreuz et 
al (2009) 

121 sites 
in Europe 

GHI NWP (ECMWF) 1 h 1 - 72 h RMSE 
MBE 

10% (clear) – 40% (all) 
-10% 

  GHI Aerosol + 
Mesoscale 
Model (AFSOL) 

1 h 1 - 72 h RMSE 
MBE 

8% (clear) - 60% (all) 
5% up to -25% (all) 

For clear-sky situations aerosol 
modeling significantly improves 
GHI and especially DNI irradiance 
forecasts relative to ECMWF. On 
the other hand, for cloudy 
conditions the AFSOL forecasts 
leads to significantly larger forecast 
errors. 

  GHI Meteosat 1 h 1 - 72 h RMSE 
MBE 

6% (clear) – 22% (all) 
0 

I believe Meteosat was calibrated 
to data 

  DNI NWP 1 h 1 - 72 h RMSE 
MBE 

30% (clear) – 82% (all) 
-25% (clear) up to -35% (all) 

Overall: 31.2% or 159 W m-2 
-26.3% or -134 W m-2 

  DNI AFSOL 1 h 1 - 72 h RMSE 
MBE 

20% (clear) - 85% (all) 
10% (clear) up to -15% (all) 

18.8% or 96 W m-2 
11.2% or 57 W m-2 

  DNI Meteosat 1 h 1 - 72 h RMSE 
MBE 

15% (clear) – 38% (all) 
<3% 

15.6% or 80 W m-2 
-1.7% or -9 W m-2 

 Forecast length has a significant impact on forecast accuracy, as long as cloudy situations are included in the analysis: for the 
AFSOL system, this can be quantified by RMSEs of 49.7% for the first day, 62.4% for the second day, and 67.7% for the third 
day. When considering only cloud-free cases, forecast length has no effect on bias or RMSE for any of the model systems 
analyzed. Thus, it can be deduced that this error tendency is caused exclusively by difficulties in cloud forecasts that increase 
with growing forecast duration. 

Wittman 
(2008) 

1 site in 
Spain, 
July 2003 

GHI NWP (ECMWF) 1 h 1 - 72 h RMSE 
MBE 

18.5% or 109 W m-2 
-11.1% or -65.6 W m-2 

Similar order but better results for 
clear skys only. AFSOL GHI on 5% 
RMSE. 

  GHI AFSOL 1 h 1 – 72 RMSE 25.1% or 148 W m-2  
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h MBE -2.2% or -12.7 W m-2 
  DNI ECWMF 1 h 1 – 72 

h 
RMSE 
MBE 

41.7% or 184.9 W m-2 
-23.3% or -103.2 W m-2 

 

  DNI AFSOL 1 h 1 – 72 
h 

RMSE 
MBE 

47.0% or 208.6 W m-2 
15.6% or 69.4 W m-2 

 

Lorenz et al. 
(2009) 

Europe GHI ECMWF 1 h 3 h -  RMSE 
MBE 

12% (clear) to 85% (cloudy) 
0% (clear) to 25% (cloudy) 

   ECMWF + MOS 1 h  RMSE 
MBE 

12% (clear) to 80% (cloudy) 
<5% 

For both ECMWF and ECMWF + 
MOS: Day 1: RMSE = 35%, Day 2: 
RMSE = 40%, Day 3: RMSE = 
55%.  

 Study also shows confidence intervals for prediction. For ensembles distributed over a region of a size of 3o x 3o, the RMSE of 
the forecast is about half the RMSE of a single site. The RMSE is reduced to one third of the site-specific RMSE for regions of a 
size of about 8o x 8o. 

Perez et al. 
(2007) 

Albany, 
NY 

GHI NDFD 3 h 3-72 h RMSE 
MBE 

32% (<4 ) to 40% (>26h) 
-10% (<4 h) to -4% (>26 h) 

National Digital Forecast Database 
only output cloud cover 

Hammer et 
al. (1999) 

Central 
Europe, 
April - 
June 

GHI Meteosat - 
Heliosat 

instanta
neous 

0.5 – 2 
h 

RMSE 18% for 30 minutes (vs 26% 
persistence), 22% for 1 h, 
28% for 2 h, 38% for 3 h. 

RMSE is satellite forecast versus 
satellite actual, i.e. no ground 
station data were used. Numbers 
were estimated from graphs. 
Filtering improves the forecast 
quality. 

Bacher et al. 
(2009) 

Denmark Pout Autoregressive 
models based 
on Pout (t-1) and 
NWP 

1 h 1 h – 
30 h 

RMSE 40 - 100% (normalized by 
mean power) for same day, 
5% - 13% (normalized by 
peak power) for next day 

For horizons below 2-h solar 
power is the most important input, 
but for next day horizons no 
considerable improvement is 
achieved from using available 
values of solar power, so it is 
adequate just to use NWPs as 
input. 

Hamill & 
Nehrkorn 
(1993) 

Eastern 
2/3 of US 

Brig
htne
ss 

GOES cross-
correlation 

instanta
neous 

0.5 h – 
2.5 h 

RMSE 9% (0.5 h) to 18% (2.5 h) 
for fall, winter, spring. 11% 
to 25% for summer 

RMSE is satellite forecast versus 
satellite actual in gray-shade 
values. Persistence was 12% to 
21%. Using 500 mbar wind field 
nearly as good as crosscorrelation 
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method. 11 km pixel resolution. 
Heinemann 
(2006) 

Germany 
Saarbruec
ken 8 
Stations 

GHI Meteosat – 
Heliosat from 
Hammer et al. 
(1999) 

 0.5 h – 
6 h 

RMSE 25% (0h) to 42% (6 h) with 
motion & smoothing. 25% 
(0h) to 55% (6 h) with 
persistence 

With increasing forecast the 
influence of smoothing becomes 
more important than the application 
of motion vector fields.. Variability 
in the cloud field has a strong effect 
on forecast RMSE. 

 Same as 
above 

GHI MM5 1 h 1 h to 
48 h 

RMSE with MOS: 33% for day 1 
and 36% for day 2 
with MM5: 52% for day 1, 
55% for day 2 

40 days in summer 2003 

Jensenius 
(1981) 

  MOS on NWP   RMSE 
MBE 

25% for 1 day 
2% for 1 day 

 

Bofinger and 
Heilscher 
(2004) 

32 sites in 
Germany 

 MOS on 
ECMWF 

  RMSE 
MBE 

32% for hourly and 19% for 
daily. Persistence was 55% 
for hourly and 48% for daily. 
2.9% for hourly and 2.8% 
for daily 

1 year 

 same  Meteosat - 
Heliosat  

1 h  RMSE 
MBE 

26% for hourly and 12% for 
daily 
3% for hourly and daily 

 

Perez et al. 
(2009) 

6 sites in 
US 

GHI Satellite 1 h 1 h to 6 
h 

RMSE 
MBE 

53 to 64 Wm-2 (1h) to 100 
to 133 Wm-2 (6h) 
(persistence: 53 to 65 Wm-2 
(1h) to 108 to 125 Wm-2 
(6h) 
-3 to 12 Wm-2 (1h) to -3 to -
13Wm-2 (6 h) (persistence: 
2 to 11 Wm-2 for 1h, 6 to -
23 Wm-2 for 6h) 

8/23/2008-1/31/2009. Persistence 
forecast included extrapolating 
measured irradiances using a 
constant GHI/GHIclear ratio. 
Forecast errors for Boulder, CO, 
are much higher due to local 
topography and are excluded. 

 same GHI NDFD 1 h 1 
(same 
day) to 

RMSE 
MBE 

75 to 114 Wm-2 (same day) 
to 97 to 146 Wm-2 (7 days) 
(persistence: 150 to 211 

All NDFD forecasts originate at 
11:00 GMT. 
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7 days Wm-2 (7 days)) 
-25 to 32 Wm-2 (same day) 
to -18 to 41 Wm-2 (7 days) 
(persistence: -8 to 10 Wm-
2) 

 Cloud-motion forecasts are more accurate than NWP up to 4-5 hours ahead with a performance gain approaching nearly 40% 
for the 2-hour forecast. The forecasts also perform better than on-site measurement extrapolation with performance gain 
peaking at hour 4. NDFD overpredicts irradiance, even after it was adjusted empirically to prevent overprediction. Comparing 
range of mean monthly values within a 2o by 2o gridbox to absolute RMSE errors at the site shows that the RMSE errors are 
much smaller. 

Remund et 
al. (2008) 

3 sites in 
CO, NV, 
MS 

GHI NDFD 1 h 1 day RMSE 
MBE 

18% (NV), 41% (CO), 36% 
(MS) 
2% (NV), 3% (CO), -4% 
(MS) 

   EMCWF V2   RMSE 
MBE 

18% (NV), 40% (CO), 32% 
(MS) 
3% (NV), 11% (CO), 6% 
(MS) 

April – September 2007. The 
breakeven of persistence is 
reached after 2-4 hours. The 
breakeven is dependent on the 
uncertainty. For ECMWF and 
NDFD this value is reached at 2 
hours for GFS/WRF at 3 hours. 
The errors for same day and 2 day 
forecast are only marginally 
different from 1 day (shown on left). 

   GFS/WRF   RMSE 
MBE 

18% (NV), 50% (CO), 41% 
(MS) 
2% (NV), 19% (CO), 18% 
(MS) 

Also conducted Kolmogorov-
Smirnov test. 
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 Abstract 
Wind energy in the United States has increased dramatically over the last decade. The 
rapid growth in installed wind power capacity has led to an increased interest in wind 
energy forecasting. This report discusses the importance of forecasting for wind power 
industry and reviews state-of-the-art methodologies for forecasting wind energy and 
output ramp rates. This report also discusses available data sources for validation and 
calibration and makes recommendations on best practices for wind forecasting and on 
future research. 
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Summary 
In this CEC-funded effort, work has been conducted with focuses on: 1) surveying 
industry to explore major stakeholders’ forecasting needs for wind energy, 2) reviewing 
state-of-the-art methodologies for forecasting wind energy and output ramp rates, 3) 
reviewing data sources for validation and calibration, and 4) making recommendations 
on best practices of wind forecasting and future research. 

Below are the key findings and recommendations: 

• The rapid growth in installed wind power capacity has led to an increased interest in 
wind energy forecasting. More and more utilities and ISOs are adopting, or planning 
to adopt, central wind forecasting systems as a means of more effectively integrating 
greater amounts of wind power. 

• Currently major stakeholders in California (PG&E, SMUD, CAISO, SCE) use both 
hour ahead (HA) forecasts and day ahead (DA) in their daily business (for power 
generation scheduling, power trading, system operating, etc). There is an emerging 
interest in intra-hour forecasting from a few parties. 

• There exist two approaches to the short-term wind power forecasting: physical 
approach and statistical approach. In some cases, a combination of both is used. Most 
forecast models employ numerical weather prediction (NWP) models to improve 
forecast accuracy. 

• The accuracy of the forecasts from a wind forecasting model depends on a number of 
factors, such as wind farm terrain topology, surface roughness, weather regime, wind 
pattern, forecast horizon, etc. For a specific wind forecasting project, comparison of 
different models needs to be carried out in order to find the “best” forecasting model 
or combination of models. 

• The quality and availability of data are critical to successful wind forecasts. It is 
recommended to fund and support work focusing on better understanding the data 
impacts, improving data acquisition and transmission, promoting data sharing, and 
developing new technologies in meteorological measurements. 

• There are limited studies on ramp forecasting. More efforts need to be taken to 
improve ramp rate forecasting. When forecasting ramp rates, it is important to define 
the aspects of ramping that have the highest priority such as ramp time start, ramp 
rate or magnitude. The CAISO and other system operators should work with 
forecasters to determine how to ask for and evaluate ramp rate forecasting. 

• Wind data are recorded and stored by a variety of entities in California, including 
CAISO, IOUs and munis, Wind Plant Owners, Wind Developers, NOAA and NWS, 
and a few other organizations and government agencies.  Most data have restricted 
availability/accessibility, inconsistent data quality, and insufficient sampling 
frequency. 

• Additional recommended future research include: new technologies in meteorological 
measurements, turbine icing forecasting, and studies on atmospheric boundary layer 
profiles. 

• Currently the penetration level of wind energy in communities and buildings is 
extremely low. Current industry does not see any need for distribution level wind 
forecasting.
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1 Introduction 
The United States is reforming its energy mix and developing diverse sources of clean, 
renewable energy to overcome emerging challenges such as increasing energy prices, 
supply uncertainties, and environmental concerns. Wind energy is one of the renewable 
energy sources that has seen rapid growth over the last decade. According to AWEA’s 
2010 report, nearly 10,000 MW of wind came online in the United States in 2009, 
bringing the total US installed wind capacity to over 35,000 MW. This represents nearly 
a twelve-fold increase in wind capacity in 2000. 

 

1.1 20% Wind Energy by 2030 
In 2006, President Bush emphasized the nation’s need for greater energy efficiency and a 
more diversified energy portfolio, which led to a collaborative effort to explore a 
modeled energy scenario in which wind provides 20% of US electricity by 2030 (DOE 
Report, 2008). In its Annual Energy Outlook 2007, the US Energy Information 
Administration (EIA) estimates that US electricity demand will grow by 39% from 2005 
to 2030, reaching 5.8 billion megawatt-hours (MWh) by 2030. To meet 20% of that 
demand, US wind power capacity would have to reach more than 300 gigawatts (GW) 
or 300,000 megawatts (MW). This growth represents an increase of more than 290 GW 
within 23 years. The 20% Wind Scenario also estimates that the installation rate of wind 
power would need to increase from installing 3 GW per year in 2006 to more than 16 
GW per year by 2018 and to continue at roughly that rate through 2030. 

 

1.2 Wind Forecasting Applications 
The rapid growth in installed wind power capacity has led to an increased interest in 
wind power forecasting. Historically, given its variable nature, wind generation has 
been taken on an as-available basis, where wind simply “shows up” and grid operators 
take whatever measures necessary to accommodate it, mainly reducing the output of 
other committed generation. At low wind penetrations, such actions are reasonable. 
However, at higher levels of wind penetration, uncertainty surrounding the amount of 
wind energy that can be expected becomes more problematic. In addition, there are costs 
associated with having excess units online, as well as from reduced unit efficiency and 
increased operations and maintenance. Improved wind power forecasting can reduce 
these costs (NERC Report, 2009). 

Various parties, such as system operators, utilities, project developers, and wind farm 
owners, can benefit from wind forecasting. For system operators, wind forecasts allow 
them to predict and manage the variability in wind power to balance supply and 
demand on regional or national grid system. Moreover, knowing in advance when 
expected surges in cheap and clean wind energy production will occur could allow for 
grid operators to reduce costs through the power-down of more expensive natural gas-
fired plants. Having recognized the importance of wind forecasting, the following 
system operators have implemented central wind forecasting as of May, 2010: the 
California Independent System Operator (CAISO), the Midwest Independent System 
Operator (MISO), the New York Independent System Operator (NYISO), the Electric 
Reliability Council of Texas (ERCOT), and the Pennsylvania-Jersey-Maryland 
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Interconnection (PJM). The Alberta Electric System Operator (AESO) and the Ontario 
Independent Electric System Operator (IESO) also have plans to implement central wind 
power forecasting in 2010. 

CAISO was the first ISO to implement centralized wind power forecasting in North 
America in June 2004. Its program is known as the Participating Intermittent Resource 
Program (PIRP). Intermittent generators that participate in PIRP pay CAISO a $0.10 per 
megawatt-hour (MWh) fee, agree to stay in PIRP for one year, install CAISO’s telemetry 
equipment, schedule consistently with the CAISO’s forecast of wind generation, and do 
not make advance energy bids into the California market. The positive and negative 
imbalance associated with wind power generators are netted out monthly, with any 
remaining imbalances paid or charged at a monthly weighted Locational Marginal Price 
(LMP). CAISO uses both day ahead (DA) forecasts and hour ahead (HA) forecasts in its 
daily operations. The DA forecasts are submitted at 5:30am prior to the operating day, 
which cover each of the 24 hours of the operating day on an hourly basis. The HA 
forecasts are submitted 105 minutes prior to each operating hour. It also provides an 
advisory forecast for the 7 hours after the operating hour. Recently, CAISO has shown 
an interest in intra-hour forecasts as well as three-day ahead forecasts (Blatchford, 2010). 

Energy providers and utilities can benefit from wind power forecasts. Imbalance charges 
imposed on energy providers that result from deviations in scheduled output will 
increase energy providers’ operating costs. Wind power forecasts can help to minimize 
these penalties. Wind power forecasts can also reduce the significant opportunity costs 
of being too conservative in bidding output into a forward market, due to uncertainty of 
availability. In California, two major utilities - Southern California Edison (SCE) and 
Pacific Energy and Electricity (PG&E) - have both integrated wind power forecasts into 
their daily business. 

SCE serves a 50,000-square-mile area of California and reached a record peak demand of 
23,303 MW on August 31, 2007. SCE considers its available generating capacity data to 
be confidential, but has reported its 1,073 MW of installed wind capacity. Although SCE 
is a participating transmission owner in CAISO, it has its own wind forecasting system 
and does not participate in PIRP. SCE started creating power generation profiles for 
wind in 1998. At that time, daily wind power profiles were simply derived from two 
years of historical power data using the Least Square Fit (LSF) method. The forecasting 
results were not satisfactory. In November of 2000, SCE hired AWS Truewind as their 
wind power forecast vendor. Since then, SEC uses AWS Truewind’s wind forecasts for 
scheduling wind generation, and pays for the wind power forecasting service internally. 
Currently, AWS Truewind sends HA forecasts to SCE twice a day, once at 5:00am and 
once at 5:00pm. The forecasts predict the energy output for the next seven days. SCE 
also uses 90-day ahead forecasts for power trading. SCE also thinks intra-hour 
forecasting is beneficial for real-time power trading (Gilman, 2010). 

PG&E currently uses next-day and two-day forecasts in its power generation 
scheduling. PG&E suggests providing, in addition to HA and DA forecasts, 15 min ~ 2 
hour forecasts to facilitate ancillary services (Klingler, 2010). 

Wind project developers can take advantages of wind forecasting. The suitability of a 
wind energy project depends on a large number of factors. For wind energy 
development, the meteorological conditions at the site are of the utmost importance, 
since wind acts as the fuel in wind energy projects. Even though this fuel is free, no 
amount of money can buy additional fuel once a project is built. Project siting is 
therefore the single most important, controllable factor in determining whether a wind 
project will be economically viable or not. 
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Since direct observations of wind speed are only made at a limited number of sites, a 
comprehensive dataset based on observations alone is impossible. Instead, computer 
models that simulate the dynamics of the atmosphere (Numerical Weather Prediction 
models, or NWPs) can provide important spatial and temporal information on the wind 
resources at a site. Proper assessment techniques using NWP modeling can provide 
valuable information on the expected diurnal and seasonal load for a project as well as a 
long-term evaluation of the site’s potential. 

Wind power forecasting can be applied to save costs when wind farm owners/operators 
need to schedule wind project maintenance and construction. Wind projects often 
require that turbines be taken down during the commissioning of new turbines. This can 
take hours to weeks depending in part on the weather. Precipitation, high winds and 
extreme temperatures need to be avoided for obvious reasons. Without accurate 
forecasting information, the chances of idling a mobilized work crew and necessary 
equipment (such as large cranes) increases. The associated costs can exceed $100,000 per 
day (Lerner and Garvert, 2009). By not taking advantage of the right weather conditions 
for construction, operations, and maintenance, overall project costs increase as deadlines 
are not met, plant generation is diminished, and resultant production revenues from 
Green Tags or Production Tax Credits are lost. 

 

1.3 Structure of This Report 
In the rest part of this report, we present a review of state-of-the-art methodologies for 
forecasting wind energy and output ramp rates in Sections 2 and 3. Section 4 focuses on 
discussing available data sources for validation and calibration. The last section of this 
report, Section 5, provides recommendations on best practices for wind forecasting and 
on future research. 
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2 Wind Forecasting Methodologies 
A wind power forecast is an estimate of the expected power production of one or more 
wind turbines (or wind farms) in the near future (from a few minutes to several days). 
This estimate is usually generated using one or a combination of wind forecast models. A 
wind forecast model is a computer program that uses various inputs to produce wind 
power output for future times. The complexity of the wind forecast models can range 
from very simple to very complex. For example, one of the simplest models is the 
persistence model. In this model, the forecast for all times ahead is set to the value it has 
now. The persistence model performs surprisingly well for very short forecast horizons 
(up to six hours) and it has become the benchmark that all other forecast models have to 
beat. Compared to the persistence model, modern wind forecast models are notably 
more complex. These modern forecast models are often called wind forecast systems by 
their developers, probably due to their complexity. For example, AWS Truewind’s 
eWind system involves using a combination of physics-based models (such as Mesoscale 
Atmospheric Simulation System (MASS), Weather Research and Forecasting (WRF), and 
Mesoscale Model Version 5 (MM5), statistical models (such as Screening Multiple Linear 
Regression (SMLR) and Artificial Neural Network (ANN), and plant output models. 

This section focuses on operational and commercial wind forecast systems that are 
generally of medium to high complexity. For more information on wind forecast models, 
please refer to review papers by Giebel (Giebel, 2003) and by Monteiro (Monteiro et al, 
2009). 

 

2.1 Forecast System Introduction 
A wind forecast model or wind forecast system can be considered as a “black-box”. This 
“black-box” takes various data as inputs and generates wind power production forecasts 
as outputs. Depending on the complexity of the forecast model or forecast system, the 
number of inputs can be either small or large. For example, the persistence model 
mentioned above only needs one input: current power generation. AWS Truewind’s 
eWind forecast system, on the other hand, operates upon a wide range of input data 
such as online meteorological data (wind speed, wind direction, temperature, pressure, 
etc.) measured by on-site and off-site met towers, online power production data 
provided by wind farm owners, historical power production data of a wind farm, and 
turbine availability data for a wind farm. 

 

2.1.1 Physical Approach and Statistical Approach 
Wind forecast models or wind forecast systems (“black-boxes”) can be categorized 
according to their approaches to producing the wind power prediction. There exist two 
approaches to wind power forecasts: physical approach and statistical approach. In some 
forecast systems, a combination of both is used. Figure 1 illustrates different approaches 
used for wind power forecasting (WPF). 
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Figure 1. There exist two approaches to wind power forecasting (WPF): physical approach and statistical approach (from 
Monteiro et al, 2009). 

 

In the physical approach, a wind forecast system tries to use physical considerations as 
long as possible to reach the best possible estimate of the local wind speed before using 
model output statistics (MOS) to reduce the remaining error. Wind forecast systems 
using physical approach usually take the output from external numerical weather 
prediction (NWP) models, which are run at the government forecast centers, and the 
raw regional atmospheric data as the inputs to run its own set of NWP models. These 
models employ higher horizontal and vertical resolution than the government center 
models and in some cases also include physics-based formulations that are more 
customized for low-level wind forecasting than those in the government center models. 
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The NWP models are formulated from the fundamental principles of physics (i.e. 
conservation of mass, momentum, and energy, and the equation of state for the 
constituents of air), which yields a set of differential equations that are typically solved 
on a three-dimensional grid. The size of the grid elements and the extent of the 
computational domain in these models determine the scales of atmospheric processes 
that can be simulated by a specific configuration of a model. Some commonly used NWP 
models include: North American Mesoscale (NAM), Global Forecast System (GFS), 
Rapid Update Cycle (RUC), Mesoscale Model Version 5 (MM5), Navy Operational 
Global Atmospheric Prediction System (NOGAPS), Coupled Ocean/Atmosphere 
Mesoscale Prediction System (COAMPS), etc. Please refer to Appendix A for more 
details on NWP models. 

In the statistical approach, a wind forecast system uses statistical models to find 
relationships between a wealth of explanatory variables (including results from NWP 
models that are run at government forecast centers) and online measured power data. 
Usually, the statistical models are developed by employing one or more of several 
different statistical algorithms. The algorithms include techniques such as Screening 
Multiple Linear Regression (SMLR), Artificial Neural Networks (ANN), Support Vector 
Regression (SVR) as well as other methods such as fuzzy logic clustering that can be 
employed to pre-condition training samples to enable the training methods to find 
stronger empirical relationships. The statistical models can be used at any stage of the 
modeling, and often they combine various steps into one. 

 

2.1.2 Forecast Stages 
If the forecast system is formulated rather explicitly, as is typical for the physical 
approach, then the stages are: downscaling, conversion to power, and upscaling: 

• Downscaling: At this stage, the wind speed and direction from the relevant 
NWP level is scaled to the hub height of the turbine. This usually involves a few 
steps. The first step is to find the best-performing NWP model(s). The next step is 
the so-called downscaling procedure. The physical approach uses a meso- or 
microscale model for the downscaling. 

• Conversion to Power: The downscaling stage generates a wind speed and 
direction for the turbine hub height. This wind is then converted to power with a 
power curve. One can use either the manufacturer’s power curve or the power 
curve derived from measured power output and wind speed and direction. The 
use of the manufacture’s power curve is the easiest approach since it does not 
require any historical data. However, newer research has shown that it is more 
accurate to use the power curve derived from measured data (Garcia-Bustamante 
et al, 2009). 

• Upscaling: Utilities usually want a prediction for the total area they service 
instead of a prediction for a single wind farm. Therefore, in this stage, the single 
result is upscaled to the area total. If all wind farms in an area would be 
predicted, this would involve a simple summation. However, since it is not 
practical to predict hundreds of wind farms, some representative farms were 
chosen to be the input data for an upscaling algorithm. Several publications 
studied the effects of the number and location of representative wind farms on 
the expected power output of a whole region. It is well documented in the 
literature that, by aggregating several wind farms over a wide area, weakly 
correlated forecast errors cancel out as a result of statistical effects (Monteiro et 
al, 2009). 
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2.1.3 Forecast Ensembles 
In practice, an ensemble of forecasts is usually used rather than an individual forecast. It 
has been demonstrated that forecast ensembles can produce higher quality forecasts and 
forecast uncertainty estimates than any individual forecast in some applications (Sivillo, 
1997). 

The basic concept is that a set of forecasts is generated by perturbing the input data and 
the model configuration parameters within their respective ranges of uncertainty, 
producing a new forecast with the perturbed input data or model parameters. In theory, 
this provides a set of forecasts that bracket the ultimate realized value of the predicted 
variables. A composite of the set of forecasts typically provides an explicit prediction 
than any individual forecast and the dispersion of the ensemble provides information 
about the forecast uncertainty. 

Since there is an enormous number of input data variables and model parameters, it is 
not practical to generate forecasts with all of the possible perturbations. Thus, in 
practice, one must select a subset of input data or model parameters to perturb to 
generate a forecast ensemble. The objective is to select the input data or model 
parameters that are responsible for most of the uncertainty in the forecast system. This 
can be quite difficult since the data or parameters responsible for the uncertainty 
typically will vary from one forecast cycle to another due to differences in weather 
regimes and other factors. 

 

2.1.4 Forecast System Operations 
The relative importance of the various inputs and models depends upon the look-ahead 
period of the forecast as well as other factors such as the characteristic weather regimes, 
surface properties in the vicinity of the wind farm and the amount and type of available 
data from the plant and other sources. The skill of short-term forecasts is typically more 
dependent upon the time series data from the wind plant as well as recent data from 
nearby off-site locations or nearby remote sensing systems (such as Doppler radars or 
wind profilers) and the performance of the statistical models. However, even 1 to 2 hour 
ahead forecasts can benefit from the intelligent use of output data from a customized 
high resolution NWP model. 

The performance of day-ahead forecasts does not have much dependence on the current 
data from the wind plant or nearby locations. These forecasts are based predominantly 
on the output from the NWP models that has been adjusted by a MOS procedure to 
remove systematic errors that are common in the output of NWP models. Although 
current data from the wind plant is not crucial to day-ahead forecast performance, 
historical meteorological and plant production data is crucial to the successful utilization 
of the MOS procedure and the construction of high quality statistical plant output 
models. 

 

2.2 Operational and Commercial Wind Forecast Systems 
This section reviews major commercial wind forecasting systems currently in use. As 
stated in the previous section, modern advanced wind forecasting models fall into one 
of these three categories: physical approach, statistical approach, or hybrid approach 
(using both physical and statistical approaches). Almost all the forecasting systems use 
one or more NWP models to improve forecast accuracy. 
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2.2.1 AWS Truewind – eWind Forecasting System 
AWS Truewind has been providing wind forecasting services through its eWind 
forecasting system to clients such as CAISO, FPL Energy, enXco, SCE, Shell energy, 
and International Energie. The eWind forecasting system employs physics-based 
numerical models and adaptive statistical techniques.  Figure 2 shows a schematic 
overview of the eWind system used in the Alberta Pilot Project (AWS Truewind 
Report, 2008). In the Alberta Project, AWS Truewind utilized its eWind forecast 
system to produce 1 to 48 hour ahead forecasts of the wind power production for a 
total of 12 wind farms. The top row of circles in Figure 2 represents the output data 
from external NWP models that are run at government forecast centers. This data, 
along with the raw regional atmospheric data (light gray circle on the left side of 
Figure 2), are used to run eWind’s own set of NWP models. These models employ 
higher horizontal and vertical resolution than the government center models and 
in some cases also include physics-based formulations that are more customized 
for low-level wind forecasting than those in the government center models. These 
models produce 3D forecasts of meteorological variables on a relatively high-
resolution grid. The output from the physics-based simulations, as it becomes 
available from each physics-based model cycle, goes into a “potential predictor” 
database along with the raw regional atmospheric data and the Supervisory 
Control and Data Acquisition (SCADA) data from the wind farms. 

The continuously updated composite NWP and observational database is used to 
train the statistical models to produce forecasts of atmospheric variables at the 
meteorological tower sites. An ensemble of these forecasts are produced by using 
two different statistical prediction procedures - Screening Multiple Linear 
Regression (SMLR) and Artificial Neural Network (ANN) - and a number of 
different training sample sizes, contents and stratification bins. The result of this 
process is an ensemble of forecasts for the atmospheric variables at the 
meteorological tower sites. This ensemble is converted into a single deterministic 
or probabilistic forecast for each variable and forecast hour by the ensemble 
composite model. This ANN-based model is trained on historical forecast 
performance data and essentially weights each forecast according to its recent 
performance or its performance in previous occurrences of the anticipated weather 
regime. 

The hourly forecasts of atmospheric variables at the meteorological tower sites are 
converted to a power production forecast by “the plant output models”. These 
models are typically trained with measured atmospheric variable and power 
production data although simulated atmospheric variable data may be used for 
those variables that cannot be computed with the available measured data. The 
output from the plant output models is a deterministic and probabilistic power 
production forecast for each forecast hour. 

 

2.2.2 Garrad Hassan – GH Forecaster 
Garrad Hassan (GH) has been predicting the long-term energy production of wind 
farms on a commercial basis for more than 18 years. As a natural extension to its 
long-term forecasting services, GH developed a method for the forecasting of the 
future energy production of wind farms over a time frame of a few hours to a few 
days and launched its “GH Forecaster” service around 2003. 
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The GH forecasting modeling method incorporates input data from a Numerical 
Weather Prediction (NWP) source of appropriate resolution, and from on-site data. 
The physical aspect of the modeling methodology is primarily provided by the 
NWP input. As of 2004, the results have been generated using NWP input from 
mesoscale models with a grid resolution of order of 12km. This input is enhanced 
through the application of multi-parameter statistical regression routines (Parkes 
and Tindal, 2009). 

The generation of power output forecast within GH Forecaster is a two-stage 
process. The first stage is accurate modeling of the meteorological conditions. The 
meteorological model uses statistical regression to transform NWP model forecasts 
to site-specific ones. The second stage is transforming meteorological forecasts to 
forecasts of power output. This transformation is typically achieved via a wind 
farm power matrix, using multiple direction and wind speed bins to represent the 
power output of the wind farm. The process of generating the power matrix can be 
theoretical or based on measured data. 
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Figure 2. A schematic of the data flow and computational process for the AWST eWind forecast system used for the 
Alberta pilot project (from AWS Truewind, 2008). 
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2.2.3 3Tier – PowerSight Wind Forecasting System 
3Tier is one of the major forecast providers in North America. The technical details 
of 3Tier’s wind forecast system are not readily available. Therefore, the following 
introduction was taken from 3Tier’s website. 

3Tier’s PowerSight wind forecasting system uses a combination of advanced 
statistical algorithms, mesoscale numerical weather prediction (NWP) models, self-
learning artificial intelligence models, and publicly available weather forecasts, 
including data from the US National Weather Service (NWS) as well as other 
global weather forecast centers. PowerSight also incorporates the climatology and 
terrain for the project location using diurnal variability averages on a monthly 
time-scale. When historical met tower or power production data is available, 
PowerSight will apply model output statistics (MOS) to its atmospheric model 
simulations. 

 

2.2.4 National Center for Atmospheric Research – Nowcasting and DICast Systems 
National Center for Atmospheric Research (NCAR) has spent more than 15 years 
developing and operationally deploying a short-term Nowcasting system, which is 
based on a technology called Variational Doppler RADAR/LIDAR Data 
Assimilation System (VDRAS). This system uses available observational datasets 
(RADAR, surface station, satellite, LIDAR, and met tower) in real-time, analyzes 
the atmosphere using physical models, combines observational data with weather 
model output, and generates nowcasts out to 2 hours every 6-10 minutes. This 
capability is especially suited for wind energy ramp detection. 

In 2009, in collaboration with Xcel Energy, NCAR implemented an operational 
Real-Time Four Dimensional Data Assimilation (RFDDA) system over the western 
and central states for supporting wind-power forecasting. This system contains 
three modeling domains with grid sizes of 30, 10, and 3.3 km. The 3.3 km domain 
covers the Rocky Mountains from New Mexico to Montana, the High Plains states, 
and more areas of the central plains. The system runs with a 3-hour cycle. In each 
cycle it produces 27-hour forecasts for the innermost domain and 72-hour forecasts 
for the two coarser domains. The real-time weather forecast maps and power-
production forecasts for about 30 wind farms in Colorado, Minnesota, New Mexico 
and Texas are provided to Xcel operational centers. Currently NCAR is providing 
following forecasts to Xcel Energy: 1) 0~1/0~2 hour ramp rate forecasts, and 2) 
0~72 hour wind energy output forecasts (this will be extended to 0~120 hour 
forecasting at the end of this year) (Mahoney, 2010). 

NCAR has also been a leader in the development of intelligent weather prediction 
systems that blend data from numerical weather prediction (NWP) models, 
statistic datasets, real-time observations, and human intelligence to optimize 
forecasts at user-defined locations. The Dynamic Integrated Forecast System 
(DICast) is an example of this technology and it is used by several of the nation’s 
largest private sector weather service companies. The DICast system can be used 
for predicting wind energy as it generates fine-tuned forecasts for specific user-
defined locations. 

 

2.2.5 Gamesa – Mega System 
Spanish wind turbine manufacturer Gamesa launched an online weather 
forecasting service for wind farms through its Mega System in April, 2010 (Gamesa 
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Press Release, 2010). The Mega System was created based on Gamesa’s years of 
experience in wind pattern forecasting and wind farm output modeling systems. 
The Mega System provides seven-day forecasts for hourly wind conditions and 
wind farm output. 

According to Gamesa’s April 20, 2010 press release, there are Basic and Premium 
versions of the Mega service. The Basic version provides forecasts to the wind 
farms five times a day. The forecasts include wind and electricity output patterns, 
and comparative analysis against hard data. The Premium version builds on the 
Basic version with hourly updates via a real-time connection to wind farm data. 

 

2.2.6 Other Forecast Service Providers and Their Models 

• Energy and Meteo Systems – Previento 
Previento is a wind power forecasting system developed by the German 
company Energy and Meteo Systems (Focken and Lange, 2008). It is capable of 
providing prediction of wind farm output power up to 4 days in advance and 
with a temporal resolution of up to 15 minutes. Energy and Meteo Systems has 
been delivering wind power forecasts to American grid operator Midwest ISO 
since August, 2008. 

 

• WEPROG – MSEPS System 
The Multi-Scheme Ensemble Prediction System (MSEPS) is a wind power 
forecasting system developed by the Danish company Weather and Wind 
Energy PROGnosis (WEPROG) (Jorgensen and Mohrlen, 2008). The Alberta 
Electric System Operator (AESO) awarded a two-year contract to WEPROG to 
provide a centralized wind power forecast for Alberta in January, 2010. 

 

• ARMINES – ARMINES Wind Power Prediction System (AWPPS) 
ARMINES and RAL have developed work on short-term wind power 
forecasting since 1993. In Project MORE-CARE, ARMINES developed models 
for the power output of a wind park for the next 48/72 hours based on both 
online SCADA and Numerical Weather Predictions. The developed forecasting 
system integrates: 

• Short-term models based on the statistical time-series approach able to 
predict efficiently wind power for horizons up to 10 hours ahead. 

• Longer-term models based on fuzzy neural networks able to predict the 
output of a wind farm up to 72 hours ahead. These models receive as input 
online SCADA data and numerical weather predictions. 

• Combined forecasts: such forecasts are produced from intelligent 
weighting of short-term and long-term forecasts for an optimal 
performance over the whole forecast horizon. 

The forecasting system developed by ARMINES is integrated in the MORE-
CARE EMS software and is installed for online operation in the power systems 
of Crete and Madera. 
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• ISET – Wind Power Management System (WPMS) 
German research institute, Kassel Institute für Solare 
Energieversorgungstechnik (ISET), has worked with short-term forecasting 
since 2000, using the German Weather Service’s DWD model and neural 
networks. Ernst and Rohrig reported in Norrkoping on the latest developments 
of ISET’s WPMS (Durstewitz et al, 2001). They now predict for 95% of all wind 
power in Germany. In January 2009, ISET was transferred to the Fraunhofer-
Gesellschaft and incorporated into the new Fraunhofer Institute for Wind 
Energy and Energy System Technology (IWES). 

 

• Precision Wind – Precise Stream 
Precision Wind’s forecast model is based on mesoscale/microscale atmospheric 
models (computational fluid dynamics techniques). The main feature is the 
ability to capture a full 17 km of vertical model depth as well as hundreds of 
km in the horizontal direction. The model uses three grids with different levels 
of horizontal resolution to define a large area around the site. The training 
method is a post-processing step that requires only three months’ worth of 
data. Uncertainty estimation is also provided in the form of maximum and 
minimum wind generation values that vary according to current and 
forecasted weather conditions. 

 

• WindLogics – WindLogics Wind Energy Forecast System 
WindLogics is a US company that provides services for utility-scale wind 
project development and grid integration. Its wind power forecast model uses 
Support Vector Machine (SVM) to convert wind speed to generation, and it is 
retrained every month in order to include new generation and weather data. It 
uses an ensemble of the National Centers for Environmental Prediction 
(NCEP), Rapid Update Cycle (RUC), North American Model (NAM), and the 
Global Forecast System (GFS) (WindLogics, 2008). 

 

• AMI Environmental Inc. – Wind Energy Forecasting System 
AME Environmental (AMI) is a private technical research and engineering 
company with experience in interdisciplinary environmental programs. The 
AMI Wind Energy Forecasting System consists of four modules: 1) a mesoscale 
model called the Fifth Generation Mesoscale Model (MM5), 2) a diagnostic 
wind model, 3) an adaptive statistical model, and 4) the forecast access by users 
(Tran, 2004). AMI applied its wind forecasting system to a 12-month testing at a 
75 MW wind plant in southwest Texas. Testing results indicate that the AMI 
forecasting system shows large improvement over both persistence and 
climatological skills. 

 

• WSI – WindCast 
WSI’s WindCast model delivers 7-day hourly predictions of wind power and 
speed for single wind farms. The forecasts can be updated seven times a day. 
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2.3 Evaluation of Forecasting Systems 

2.3.1 Measures of Accuracy 
Two common measures of accuracy are mean absolute error (MAE) and root-mean 
square error (RMSE). MAE is expressed as a percentage of the plant’s rated capacity. 
RSME is expressed as the standard deviation of the forecast errors: 

MAE=ce.	  The	  request	  for	  bids	  concluded	  in	  June	  2009.	  

The request for bids required that teach forecast service provider submit forecasts from 
four selected wind farms, representing three of the major wind areas in California. These 
forecasts covered both day ahead and hour ahead time frames. 

CAISO performed a detailed statistical analysis of the forecasts generated by three 
forecast service providers during the request for bids (RFB) period from July, 2008 
through June, 2009 (Blatchford and de Mello, 2009). Here are the key findings of their 
analysis: 

• Aggregate day ahead forecast error is less than 15%, calculated as the root mean 
square error (RMSE). 

• Nearly 40% of the day ahead forecasts have an absolute error of less than 5%; 
over 60% of all day ahead forecasts have an absolute error of less than 10%; and 
over 75% of all day ahead forecasts have an absolute error of less than 15%. 

• Aggregate hour ahead forecast error is less than 10% RMSE. 
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Figure 3. Total day ahead forecast RMSE by hour of day (from Blatchford and de Mello, 2009). 

 

• Approximately 50% of the hour ahead forecasts have an absolute error of less 
than 5%; nearly 75% of the hour ahead forecasts have an absolute error of less 
than 10%; and nearly 90% of all hour ahead forecasts have an absolute error of 
less than 15%. 

• Geographic diversity and aggregation of forecasts for individual wind facilities 
improve overall forecasting accuracy in both the day ahead and hour ahead time 
frames. 

• Forecast performance is best at production levels greater than 80% of total 
capacity and less than 20% of capacity. 

• Data quality constitutes a critical factor in forecast accuracy. 

Figure 3 shows the total day ahead RMSE throughout the day and the average 
generation for each hour. It can be seen that for Forecaster 1 and Forecaster 2, the DA 
forecast RMSE ranges from 12% to 17%. For Forecaster 3, the DA forecast RMSE ranges 
from 15% to 28%. The forecast errors throughout the middle of the day seem to be 
generally smaller than the beginning and end of the day. This is likely due to the typical 
lower generation output during this time following the diurnal generation pattern. 

Figure 4 is taken from CAISO’s report and shows the weekly day ahead forecast RSME 
on a rolling basis. It can be seen that the overall pattern of root mean square error tends 
to track quite well between forecast providers with the exception of a few times of the 
year. This similar RSME trend among the forecast providers suggest that multiple 
forecast may not provide much additional value. This may also indicate that most 
forecast errors are rooted from the National Weather Service NWP output since all three 
forecasters use them as the input for their forecast models. 
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Figure 4. Rolling Weekly Day ahead Forecast RMSE (from Blatchford and de Mello, 2009). 

 

2.3.2 Alberta Pilot Project 
The Alberta Electric System Operator (AESO), in conjunction with the Alberta Energy 
Research Institute and the Alberta Department of Energy, initiated a wind power 
forecasting pilot project in the summer of 2006 (Industry Work Group, 2008). In the 
project, three very different forecasting methodologies were trialed. The forecasters 
selected were AWS Truewind from US, WEPROG from Denmark, and Energy & Meteo 
Systems from Germany. 

The forecasters provided forecasts for 12 different wind power facilities (7 existing 
facilities and 5 future facilities) spread out across southern Alberta in four regions. From 
May 1, 2007 to May 1, 2008, forecasts were delivered each hour, predicting the next 48 
hours. The forecasts included the hourly average, minimum and maximum of wind 
speed, wind power, and wind power ramp rates at each facility. 

The project demonstrated that forecasting in Alberta appears more difficult than in other 
locations. This is primarily due to the extreme or variable weather patterns experienced 
in Alberta, such as Chinooks and complex terrain, being close to the Rocky Mountains. 

In the very short term (up to 6 hours out), the forecasting models were comparable to 
persistence forecasts, where persistence assumes that conditions at the time of the 
forecast will not change. Beyond 6 hours, the forecast models outperformed persistence 
forecasts. As the time horizon increased, the accuracy of the forecasts decreased. 
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Figure 5 shows the total day ahead forecast RMSE for three forecasters that participated 
in the Alberta Pilot Project. The forecast RMSE increases as the forecast horizon 
increases, particularly for the first six forecast horizons. The forecast RMSE is in the 
range of 6% to 20% for the first six forecast horizons and 20% to 30% between the 7th 
and 48th forecast horizon. 

The Albert Pilot Project aimed at identifying the best methodology to forecast wind 
power in Alberta. However, the most effective forecast of the three forecast methods and 
vendors trialed varied with the time horizon and weather pattern combination. While on 
forecaster performed well in one condition, they would perform less well in another, 
making it difficult to determine the better methodology. 

In this project, all three forecast service providers used multiple Numerical Weather 
Prediction models to generate forecasts. Generally making use of various NWP models 
having different update cycles and update times should provide a more robust 
approach. This can also be beneficial as on NWP model might be better with certain 
weather regimes or in different time frames than another NWP model. 
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Figure 5. Total day ahead forecast RMSE for three forecasters as a function of forecast horizons (from McKay, 2008). 

Figure 6 was provided by Energy & Meteo Systems. The two sub-figures show the 
individual forecasts based on different NWP models for two different weather 
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situations. In the top sub-figure, a ramp event was very well captured by Model 1. 
However, in certain weather situations such as small low pressure systems with fronts, 
Model 2 captures the sequence of events better than Model 1, as shown in the bottom 
sub-figure. 

 
Figure 6. Individual forecasts based on two different NWP models for two different weather situations (from Focken and 
Lange, 2008). 

 

3 Ramp Rate Forecasting 
As the penetration of wind energy continues to increase around the world, the impact of 
wind energy on the management of electrical grids is becoming increasingly evident. 
The challenge for the grid operator of integrating wind energy, or for the energy trader 
to maximize the market value of the energy, is especially tough during periods of rapid 
change in wind farm production, or ramp events. This section will give an overview of 
efforts and studies on ramp rate forecasting. 

 

3.1 Frequency of Ramp Events and Definition of a Ramp Event 
A change in power production can be defined by two parameters: the size of the ramp 
(the amount of change in power production that occurs, usually a percentage of the 
wind farm capacity), and the duration of time over which the change occurs. Ramp 
events of the greatest concern are characterized as having large sizes and short 
durations. 

Figure 7 is taken from a study by Greaves (Greaves et al, 2009) and shows the frequency 
of events with varying size and duration constraints using the measured data from a 
number of wind farms in the UK. It can be seen that the frequency of events decreases 
rapidly with increasing size and also decreases with decreasing duration. 
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Currently there is no strict definition of a ramp event, which poses some difficulty on 
assessing ramp events. In McKay’s report (McKay, 2008), a ramp event was defined as a 
1-hour change in power production of more than 20% of capacity. In Greaves’ paper 
(Greaves et al, 2009), a ramp event was defined as having a change in power of 50% of 
capacity or more over a period of 4 hours or less. This definition of a ramp rate was also 
used in Zack (Zack, 2007). Using this definition, it can be seen from Figure 7 that ramp 
events occur less than 6% of the time. 

 
Figure 7. Frequency of power changes with varying size and duration (from Greaves et al, 2009). 

 

3.2 Ramp Forecasting Research 
There are limited studies and research on ramp rate forecasting. Kusiak (Kusiak et al, 
2009) developed forecasting models for short- and long-term prediction of wind farm 
power built on weather forecasting data generated at different time scales and horizons. 
The wind farm power prediction models were built with five different data mining 
algorithms. It was found that the model generated by a neural network outperforms all 
other models for both short- and long-term forecasting. They also used their models to 
predict ramp rates. 

Cutler (Cutler et al, 2009) discussed the advantages and disadvantages of time-series 
NWP forecasts. They developed a methodology to transform the wind speeds predicted 
at each grid point in a region around the wind farm location to an equivalent value that 
represents the surface roughness and terrain at the chosen single grid point for the wind 
farm site. The chosen-grid-equivalent wind speeds for the wind farm can then be 
transformed to available wind farm power. The result is a visually-based decision 
support tool which can help the forecast user to assess the possibilities of large, rapid 
changes in available wind power from wind farms. 

In the Albert Pilot Project, the three participating forecast providers delivered wind 
energy output forecasts as well as ramp event forecasts to the system operator (Industry 
Work Group, 2008). The ramp event forecasts were assessed using an approach called 
Critical Success Index (CSI) (McKay, 2008). Using the CSI methodology it was found that 
none of the forecasters did well in predicting the ramp rates. Perhaps part of the reason 
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was that forecast providers were not required to deliver ramp rate forecasts at the 
outset. Therefore, the forecasters trained their models to provide low long term error. If 
the forecasters were to focus on ramp rates, they could improve on ramping forecast 
accuracy. 

Greaves (Greaves et al, 2009) conducted a study using Garrad Hassan’s GH Forecaster 
system to forecast ramp events. Historical data from GH Forecaster services for forecast 
power and measured production were used to identify forecast and measured ramp 
events. A total of 18 wind farm sites were analyzed, among which 12 in the UK and 6 in 
the US. It was found that forecasts for portfolios of wind farms are generally more 
accurate than forecasts for individual wind farms, especially for large changes in power 
production. For individual UK sites, the ramp forecasts with a horizon of 3 hours have a 
ramp capture rate of 44.9%.  The ramp forecasts with a fore cast horizon of 24 hours 
have a ramp capture rate of 59.1%. For portfolios of wind farms, the ramp capture rates 
are 50.0% and 42.9%, respectively. 

Greaves (Greaves et al, 2009) also studied the effects of using a combination of different 
NWP models. Table 1 shows the ramp capture rate and forecast accuracies for forecasts 
for a single wind farm. By using current intelligent methods for the NWP combination 
the forecast accuracy is slightly better than that for either NWP forecast used on its own. 
However, the better NWP forecast has a ramp rate capture nearly 10% higher than the 
combination and the other NWP forecast. 

Table 1. Ramp capture rate and forecast accuracies for forecasts for a single wind farm 
(from Greaves et al, 2009) 

NWP source used NWP1 NWP2 Combined 
Number of true forecasts 78 97 80 
Number of false forecasts 67 79 65 
Number of missed ramps 127 108 125 
Forecast accuracy (%) 53.8% 55.1% 55.2% 
Ramp capture (%) 38.0% 47.3% 39.0% 
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4 Data Sources for Validation and Calibration 
Wind data – either wind speed or power generation – are recorded and stored by a 
variety of entities.  There are, however, a number of obstacles to employing these data 
for forecasting, particularly for grid integration applications.  As discussed further 
below, the issues include: 

• Restricted data availability/accessibility – Data accessibility can be restricted by 
confidentiality or because of difficulties with retrieving data from complex 
database systems. 

• Data quality/errors – There are a wide variety of data quality issues.  They are 
most likely to occur in data that are recorded without immediate application; in 
such cases, the data are often stored without any vetting. 

• Insufficient sampling frequency – Wind data are often stored at 10-minute or 
hourly intervals.  This is too slow for some forecasting analyses, particularly 
when dealing with ramps.  Sampling frequency may be constrained by data 
telemetry or storage systems; even without such constraints, data are often 
stored at relatively low frequencies because there is no perceived need to save at 
a faster rate. 

A number of wind data sources in California are detailed below. 

 

4.1 Available Wind Data Sources 

4.1.1 Generation Data in CAISO PI System 
CAISO maintains the single largest warehouse of California wind power data in 
their PI data system.  The PI System is a real-time data system from OSIsoft.  
CAISO also uses PI to store a vast amount of data on the California power grid, 
including power generation data for most of the power plants in California.  Much 
of the power data are available at four-second sampling intervals.  Presumably, 
some data are available at even faster rates, perhaps intra-second. 

There are two significant issues with the PI data.  First, much of the data are 
recorded, but never actually used.  The data are therefore not vetted and may have 
data quality issues.  Second, the data are bound by confidentiality; in general, 
CAISO cannot disclose data for any individual power plant.  However, 
confidentiality can be satisfied by masking data through, for example, aggregation 
or normalization. 

Shiu (Shiu et al, 2006) used various renewable generation data from the CAISO PI 
System.  The data were one-minute averages.  A lengthy discussion of the data and 
the problems they encountered obtaining and using the data are included in their 
report.  Note that since the release of Shiu et al’s study, CAISO has been called 
upon several more times for renewable generation data from PI.  With the 
increased usage of the data, some of the issues identified by Shiu et al have been 
alleviated. 
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4.1.2 CAISO PIRP 
CAISO administers the Participating Intermittent Resource Program (PIRP), a 
voluntary program in which intermittent power plants (i.e., solar and wind) are 
penalized for energy production deviations netted over a month.  The deviations 
are based on forecasts provided by CAISO which, in turn, are partially based on 
meteorological data from the plant sites.  CAISO records and stores the PIRP 
meteorological data. 

Unlike the PI generation data1, the PIRP data have immediate application with 
financial consequences.  The data therefore have undergone some inspection and 
CAISO has actively taken steps to ensure their accuracy (Blatchford and Sahib, 
2007).  Like the PI generation data, the PIRP data are bound from release by 
confidentiality. 

 

4.1.3 Other CAISO Data Systems 
CAISO displays the current amount of wind power generation feeding their 
control area at http://www.caiso.com/outlook/SystemStatus.html.  It is updated 
every few minutes.  Data for the preceding part of the day are shown graphically, 
but not quantitatively.  Peak power generation and the total energy production of 
wind (and other renewables) of the previous day are reported at 
http://www.caiso.com/green/renewrpt/DailyRenewablesWatch.pdf. 

CAISO also maintains the Open Access Same-time Information System (OASIS) at 
http://oasis.caiso.com/.  OASIS is a publicly accessible system that reports real-
time data on load, transmission, and various power and energy markets.  OASIS 
does not contain any generation data, but its datasets may be useful to many grid 
integration analyses. 

 

4.1.4 Utilities (IOUs and munis) 
As the primary purchasers and resellers of bulk electricity, utilities – both the 
investor-owned utilities (IOUs) and municipal utilities (munis) – track power 
generation served within their territories.  Wind power data is typically stored at 
relatively coarse sampling intervals – 10-minutes or greater.  As these data are 
used directly for financial accounting, they are maintained at high quality and 
have been referred to – somewhat facetiously – as “correct by definition”.  
Confidentiality is a significant barrier to accessing the data.  Again, confidentiality 
can be satisfied through data masking. 

Shiu et al obtained hourly data from PG&E and SCE, as detailed in their report.  
Separately, Shiu obtained ten-minute data from SMUD for a study of wind-grid 
integration (including ramps) and plant performance.  Note that SMUD was also 
the owner of the wind plant studied and the contractee (client/recipient) of the 
study. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Note that while we distinguish between CAISO’s PI generation data and PIRP data, the PIRP data may very 
well also be stored in the PI System. 
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4.1.5 Wind Plant Owner/Operators 
Owners/operators record and store data on their wind plants through SCADA 
(supervisory control and data acquisition) systems.  Typically, SCADA data 
include turbine production, met data (including wind speed and direction) from 
individual nacelle met instruments, and met data from standalone met towers.  
The data are often little used except for rudimentary energy production 
calculations and cursory review of fault histories.  They are commonly stored at 10-
minute or slower intervals. 

While some older SCADA systems were subject to a variety of data quality issues, 
modern systems are generally quite good.  The data can be obtained and used only 
through arrangements with individual wind plant owners/operators. 

 

4.1.6 Wind Plant Developers 
Wind plant developers evaluate prospective sites with met towers of, typically, 50 
m to 80 m height.  The met data include wind speed, wind direction, standard 
deviation of wind speed (to quantify turbulence), temperature, and pressure (for 
air density).  These parameters are measured at a range of heights and recorded at 
10 minute intervals.  The met towers are often remotely located and data must be 
either stored locally on flash cards or telemetered through limited bandwidth links 
(e.g., satellite).  Faster data rates may therefore not be possible. 

Developers generally guard their data very carefully, as they are the potential 
bases for very large investments.  Once development for a site commences, the 
ownership of the data may shift to the plant owner/operator. 

 

4.1.7 California Tall Tower Data 
The California Energy Commission is conducting a tall met tower data campaign 
with a number of sites across the state.  The data are intended for regional wind 
assessment, verification of numerically modeled wind maps, and generally for 
research to promote wind development in the state.  The data recorded are similar 
to that of wind developers, discussed above.  The data will be released to the 
public shortly. 

 

4.1.8 NOAA and NWS 
The National Weather Service (NWS) designed the National Digital Forecast 
Database (NDFD) to provide access to weather forecasts in digital form from a 
central location. As the foundation of the NWS Digital Services Program, NDFD 
consists of gridded forecasts of sensible weather elements (e. g., cloud cover, 
maximum temperature). NDFD contains a seamless mosaic of digital forecasts 
from NWS field offices working in collaboration with the National Centers for 
Environmental Prediction (NCEP). Currently, the NDFD contains data 
representing the following weather: 12-hour probability of precipitation, apparent 
temperature, dew point, hazards, maximum and minimum temperatures, 
quantitative precipitation amount, significant wave height, sky cover, snow 
amount, temperature, weather, wind direction, and wind speed. More elements 
will be added as development of the NDFD progresses. 
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NDFD data are available for projections at the following Coordinated Universal 
Times (UTC): 0000, 0300, 0600, 0900, 1200, 1500, 1800, and 2100. The elements in 
NDFD are available for the Contiguous United States	  (CONUS). A subset of NDFD 
elements is available for Puerto Rico/the Virgin Islands, Hawaii, Guam, and 
Alaska. Grids for the CONUS are currently available from NDFD at 5 km spatial 
resolution. 

The spatial resolution for the grids for Hawaii and Guam is 2.5 km; for Puerto 
Rico/the Virgin Islands is 1.25 km; for Alaska, 6 km. For the North Pacific Ocean 
Domain the spatial resolution is 10 km. NWS plans to increase both spatial and 
temporal resolution in the future. 

 

4.1.9 California Data Exchange Center (CDEC) 
The California Data Exchange Center (CDEC) is not a single wind data source, but 
a centralized access point to a large number of public hydrological and 
meteorological datasets for California.  CDEC is maintained by the Department of 
Water Resources and can be accessed at http://cdec.water.ca.gov/.  It contains 
data from over a thousand remote stations and exchanges data with numerous 
federal and state agencies including the National Weather Service.  However, note 
that much of the CDEC data is hydrological, not meteorological. 

The wind data in CDEC are intended for applications such as fire management and 
general weather monitoring, not wind power analysis.  In general, the 
anemometers feeding CDEC are at low heights and may be obstructed.  Data 
should not be used without first surveying the source sensor installation.  Seitzler 
[Seitzler, 2009] discuss the use of CDEC data for wind power applications and 
survey a number of sensors across California. 

 

4.1.10 California Irrigation Management Information System (CIMIS) 
The California Irrigation Management Information System (CIMIS) is a network of 
over 120 meteorological stations across the state.  It is managed by the Department 
of Water Resources and its data are openly available at 
http://wwwcimis.water.ca.gov/.  Wind and insolation data are recorded. 

CIMIS anemometers are at a height of only two meters.  While appropriate for 
irrigation management, the short height limits its utility for wind power analysis. 
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5 Recommendations 
5.1 Best Practices in Forecasting 

5.1.1 Well Defined Objectives 
It is important for the forecast clients to consider factors such as how a wind power 
forecast will be used and what aspects of wind power a forecast should focus on. For 
example, the models trained to provide a low long term average error may not be 
suitable for short term system operations if the forecast methodology hedges against 
ramps or extremes, as shown in Figure 8. It has been demonstrated that without this 
focus, the nature of forecast error may be too broad for one single forecast to be optimal 
for multiple purposes such as real time operations, transmission scheduling and 
ancillary service forecasting (Industry Work Group, 2008). 

 
Figure 8. Forecasting models trained to have low average errors missed ramps on the afternoon of September 6, 2007 
(from Industry Work Group, 2008). 

 

5.1.2 Improve Data Quality 
Forecasts rely on high quality data made available in a timely manner to the forecast 
providers for use within their models. Most stakeholders that we have talked with and 
literatures that we have reviewed emphasize the importance of high quality data to 
successful wind energy forecasting. Refer to Section 5.2 for more details. 
 

5.1.3 Power Conversion 
Research has shown that it is more accurate to use the power curve derived from 
measured data than to use the power curve provided by the turbine manufacturer. 
Garcia-Bustamante (Garcia-Bustamante et al, 2009) examined the effects of different 
power conversion models on estimated monthly energy output. Figure 9 shows the 
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estimation of monthly energy output for five wind farms in Spain using three different 
power conversion models: Theoretical Power Curve (TPC), Average Power Curve 
(APC), and Polynomial Fit Curve (PFC). The TPC is the same as the manufacturer’s 
power curve. The APC and PFC were power curves derived from measured wind and 
power data using two different methods. It can be seen that the TPC generally 
underestimates the power generated at the lower wind speeds whereas it tends to 
overestimate it for the higher wind speeds. A global overestimation of the final energy 
output should be expected from the TPC model. The APC and PFC are very similar and 
their estimations are very close to the measured energy output. 

 
Figure 9. Estimation of monthly energy output for five wind farms in Spain using three different power conversion models: 
Theoretical Power Curve (TPC, dashed line), Average Power Conversion (APC, solid line), and Polynomial Fit Curve 
(PFC, points) (from Garcia-Bustamante et al, 2009). 
 

5.1.4 Learning by Doing 
Forecast experience matters. As many research and project indicated, knowledge of the 
wind regimes and the regime-specific forecast model error patterns can often result in 
better forecast performance. Thus there is no substitute for learning by doing. 
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5.1.5 Collaboration with NWS, NOAA, and NCAR to Improve NWP Models 
The National Weather Service (NWS) and National Oceanographic and Atmospheric 
Administration (NOAA) provide the numerical weather prediction (NWP) models 
tuned to providing temperature and rain forecasts for the entire US. These models are 
the baseline inputs to the forecasters’ wind and solar predictions. Balancing authorities 
that are integrating intermittent renewable resources should coordinate efforts to tailor 
models for wind and solar forecasting. 

There have been continuous efforts to improve NWP models used in wind and solar 
forecasting. For example, significant numerical model development is conducted at the 
National Center for Atmospheric Research (NCAR) with contributions from the research 
community. NCAR tests new model capabilities for NWS/NOAA before they become 
operational enhancements. It is recommended to collaborate with NWS, NOAA, and 
NCAR on improving current NWP models and developing higher-resolution NWP 
models to improve wind power forecast accuracy. 

 

5.2 Data 

5.2.1 Data Impacts on Forecasts 
Most stakeholders that we have talked with and literatures that we have reviewed 
emphasize the importance of high quality data to successful wind energy forecasting. 
For example, to meet their increasing needs for real-time meteorological data, SCE and 
AWS Truewind worked together to put up 12 new meteorological stations in SCE’s 
service areas (6 in Palm Springs and 6 in Tehachapi) since 2002. The real-time 
meteorological data (wind speed, wind direction, temperature, pressure, etc.) measured 
from these 12 met towers have been used as input to AWS Truewind’s eWind 
forecasting system since then. 

Blatchford and de Mello pointed out in the CAISO’s report that the data quality from the 
wind sites including the meteorological, megawatt production, and megawatt 
availability impacts the forecast quality. Figure 10 shows how the hour ahead forecast 
root mean square error (RMSE) is impacted when the real-time megawatt production 
telemetry is improperly reporting. For all forecast providers the forecast error during 
periods of errant data is significantly higher than under normal circumstances. 

 

5.2.2 Data Validation and Filtering 
To obtain high quality data, it is recommended that dataset providers and forecast 
service providers work closely to create well-defined data formats, establish reliable, 
secure, and fast data transmission methods, and apply QA/QC measures to the data. 
The recommended QA/QC measures include: 

• Reviewing instruments orientation and calibration reports and correcting the 
data accordingly when necessary. 

• Flagging data with abnormal wind speeds or power and/or standard deviations 
and filtering them out if they fall outside of a certain range. 

• Screening the data for icing events or any other anomalies that may have not 
been caught in the screening-out criteria and filtering them out. 

• Comparing wind speed data from different anemometer levels and from 
adjacent sites looking for discrepancies that are then filtered when necessary. 

• Other site specific QA/QC procedures. 
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Figure 10. Impact of data quality on forecasts (from Blatchford and de Mello, 2009). 

 

5.3 Future Research 

5.3.1 Data Acquisition and Transmission 
Although it is well recognized that more sensors are needed in order to obtain more 
real-time data, many questions remain. These questions to be addressed in future 
research: 

• What are current and emerging technologies for meteorological measurements? 
What are their advantages/disadvantages? 

• How many met towers/sensors are needed for a single wind farm? 
• Where should new met towers/sensors in a wind farm be placed? What are the 

impacts of terrain topology on the forecast accuracy? 
• How high should the new met towers be? 
• How does the sampling frequency affect forecast results? 
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• How to securely, reliably and promptly transmit measured data? What protocols 
and formats should be used for data transmission? 

 

5.3.2 Sources of Error 
While the magnitude of the errors associated with forecasting is now well understood, 
the source of these errors is mostly unknown. Possible sources include NWP model 
output, meteorological tower location, anemometer sensors, wind power conversion 
models, turbine availability data, etc. If the sources of the errors can be determined, this 
information can focus effort to improve accuracy. 

 

5.3.3 Ramp Rate Forecasting 
Most wind energy prediction systems have focused on next day optimization. Research 
is needed to fully assess the best techniques or combination of techniques (for example, 
blending of rapid cycle NWP with statistical techniques) needed to fully address ramp 
events. 

It is also important to define the aspects of ramping that have the highest priority such 
as ramp time start, ramp rate or magnitude. The CAISO and other system operators 
should work with forecasters to determine how to ask for and evaluate ramp rate 
forecasting. 

 

5.3.4 Improving Icing Forecasts 
Turbine icing is likely not a problem in California. However, in northern states where 
temperatures can drop below freezing point in winter, icing on wind turbines can 
dramatically affect their efficiency. Improved understanding of turbine icing is critical 
for the accurate prediction of wind energy. 

A great deal of icing research and development has been performed over decades for 
aircraft icing and other structural icing. These capabilities should be analyzed to 
determine their applicability for turbine icing. 

 

5.3.5 New Technologies 
The authors recommend future research on new technologies in meteorological 
measurements, such as vertical RADAR and LIDAR. 

Light Detection and Ranging (LIDAR) is an active remote sensing technology that 
measures properties of scattered light to find range and/or other information of a 
distant target. The major advantages of LIDAR over the traditional cup anemometers 
include: 1) LIDAR is a remote sensing technology, meaning LIDAR devices can be setup, 
operated and maintained at the ground level, and 2) LIDAR is capable of in-plane 
scanning, meaning it can measure wind speed and direction in a plane while cup 
anemometers can only measure wind speed at a point. The major disadvantage of 
LIDAR is its cost. LIDAR holds promise for detection and forecasting ramp events but 
more research is needed to prove this concept. 
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Several companies develop wind sensing devices based on LIDAR technology. British 
company QinetiQ has developed ZephIR LIDAR wind profiler, which is capable of 
measuring wind speed, wind direction, and turbulence for heights ranging from 10 m ~ 
200 m. US company Catch the Wind Inc. also developed Vindicator Wind Sensor System 
based on LIDAR technology. 

 

5.3.6 Atmospheric Boundary Layer Profiles 
The authors recommend future research related to atmospheric boundary layer profiles. 
A boundary layer profile is the vertical distribution of wind velocity at a given location. 
It is affected by the surface roughness, temperature, turbulence, and many other factors. 

The boundary layer profiles influence both the power production and the mechanical 
loads on the wind turbines. Knowledge of the wind characteristics across the blade span 
has a big impact on turbine efficiency (hence power production). The lack of a precise 
knowledge of atmospheric boundary layer profiles has negative impacts on the NWP 
models, especially in the downscaling step, resulting in less accurate forecasts. 

 



37 

 

References 
[1] 3Tier Inc., “Wind Products – Operations and Optimization”, 3Tier Website 

(http://www.3tier.com/en/products/wind/) 

[2] AWS Truewind Inc., “Final Report for the Alberta Forecasting Pilot Project”, Alberta 
Pilot Project, June 2008 

[3] Blatchford, J., Harmon, D., and Sahib, R., “PIRP Data Transfer Analysis and 
Recommendations for the CAISO”, September, 2007 

[4] Blatchford, J. and de Mello, P., “Analysis of June 2008 – June 2009 Forecast Service 
Provider RFB Performance”, California ISO Report, August 2009 

[5] Blatchford, J., personal communication, 2010 

[6] Cutler, N. J., Outhred, H. R., MacGill, I. F., and Kay, M. J., “Characterizing Future 
Large, Rapid Changes in Aggregated Wind Power using Numerical Weather 
Prediction Spatial Fields”, Wind Energy, Vol. 12, 2009 

[7] Durstewitz, M., Ensslin, C., Hahn, B., Hopper-Kipper, M., “Annual Evaluation of the 
Scientific Measurement and Evaluation Programme (WMEP)”, Kassel, 2001 

[8] Focken, U. and Lange, M., “Final Report: Wind Power Forecasting Pilot Project in 
Alberta, Canada”, May 2008 

[9] Gamesa, “Gamesa Launches an Online Weather Forecasting Service for Wind 
Farms”, Gamesa Press Release, 2010 

[10] Garcia-Bustamante, E., Gonzalez-Rouco, J. F., Jimenez, P. A., and etc., “A 
Comparison of Methodologies for Monthly Wind Energy Estimation”, Wind Energy, 
Vol. 12, 2009 

[11] Giebel, G, “On the Benefits of Distributed Generation of Wind Energy in Europe”, 
Ph. D. Thesis from the Carl von Ossietzky Universität, VDI Verlag 2001 

[12] Giebel, G., “The State-Of-The-Art in Short-Term Prediction of Wind Power – A 
Literature Overview”, Project ANEMOS, 2003 

[13] Gilman, B., personal communication, 2010 

[14] Gow, G., “An Adaptive Approach to Short-Term Wind Forecasting”, AWEA 2003 

[15] Greaves, B., Collines, J., Parkes, J., and Tindal, A, “Temporal Forecast Uncertainty 
for Ramp Events”, EWEC2009 

[16] Industry Word Group, “Wind Power Forecasting Pilot Project”, Alberta Pilot 
Project, 2008 

[17] Jorgensen, J. U. and Mohrlen, C., “AESO Wind Power Forecasting Pilot Project Final 
Project Report”, May 2008 

[18] Kariniotakis, G., Position Paper on JOULE Project, JOR3-CT96-0119, 1997 

[19] Klingler, A., personal communication, 2010 



38 

[20] Kusiak, A., Zheng, H., and Song, Z., “Wind Farm Power Prediction: A Data-Mining 
Approach”, Wind energy, Vol. 12, 2009 

[21] Landberg, L. and Watson, S. J., “Short-Term Prediction of Local Wind Conditions”, 
Boundary Layer Meteorology, 1994 

[22] Lerner, J. and Garvert, M., “The Role and Importance Forecasting Plays for Wind 
Power Industry”, RMEL Electric Energy, Spring 2009 

[23] Mahoney, B., personal communication, 2010 

[24] McKay, D. C., “Wind Power Forecasting Pilot Project Part B: The Quantitative 
Analysis Final Report”, Alberta Pilot Project, August 2008 

[25] Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J., and Conzelmann, G., “A 
Quick Guide to Wind Power Forecasting: State-of-the-Art 2009”, ANL/DIS-10-2, 
November, 2009 

[26] NERC, “Accommodating High Levels of Variable Generation”, North American 
Electric Reliability Corporation Report, 2009 

[27] Parkes, J. and Tindal, A., “Forecasting Short-Term Wind Farm Production in 
Complex Terrain”, EWEC 2004 

[28] Porter, K. and Rogers, J., “Status of Centralized Wind Power Forecasting in North 
America”, NREL Report, NREL/SR-550-47853, 2010 

[29[ Seitzler, M. and Jackson, K., “Assessment of Selected Stations from the CDEC 
Database for Renewable Energy,” CWEC report, 2009 (in print). 

 [30] Shiu, H., Milligan, M., Kirby, B., and Jackson, K., “California Renewables Portfolio 
Standard Renewable Generation Integration Cost Analysis”, CEC-500-2006-024, 
March, 2006 

[31] Sivillo, J., Ahlquist, J., and Toth, Z., “An Ensemble Forecasting Primer”, Weather 
and Forecasting, Vol. 12, No. 4, December, 1997 

[32] Tran, K., “Development and Testing of a Wind Energy Forecasting System”, AMI 
Environmental Inc. publication, 2004 

[33] University Corporation for Atmospheric Research, “Operational Models Matrix: 
Characteristics of NWP and Related Forecast Models”, UCAR Website 
(http://www.meted.ucar.edu/nwp/pcu2/index.htm) 

[34] US Department of Energy, “20% Wind Energy by 2030”, DOE Report, 2008 

[35] WindLogics, “Renewable Energy Research and Development Project (RD-57) – Final 
Report”, October, 2008 

[36] Zack, J., Bailey, B., and Brower, M., “Wind Energy Forecasting: The Economic 
Benefits of Accuracy”, AWS Truewind Report, 2006 

[37] Zack, J. W., “Optimization of Wind Power Production Forecast Performance during 
Critical Periods for Grid Management”, EWEC 2007 



39 

 

Glossary 
 
AESO Alberta Electric System Operator 
ANN Artificial Neural Network 
AWPPS ARMINES Wind Power Prediction System 
CAISO California Independent System Operator 
CDEC California Data Exchange Center 
CFD Computational Fluid Dynamics 
CIMIS California Irrigation Management Information System 
COAMPS Coupled Ocean/Atmosphere Mesoscale Prediction System 
CONUS Contiguous United States 
CSI Critical Success Index 
CWEC California Wind Energy Collaborative 
DA Day Ahead (Forecast) 
DICast Dynamic Integrated Forecast System 
EIA Energy Information Administration 
ERCOT Electric Reliability Council of Texas 
GDAS Global Data Assimilation System 
GEM Global Environmental Multiscale 
GFS Global Forecast System 
GSI Gridpoint Statistical Interpolation 
HA Hour Ahead (Forecast) 
IESO Ontario Independent Electric System Operator 
IOU Investor-Owned Utility 
ISET Kassel Institute für Solare Energieversorgungstechnik 
IWES Fraunhofer Institute for Wind Energy and Energy System Technology 
LIDAR Light Detection and Ranging 
LMP Locational Marginal Price 
LSF Least Square Fit 
MAE Mean Absolute Error 
MASS Mesoscale Atmospheric Simulation System 
Mesoscale A term used in meteorology to describe weather systems with a scale 

between the storm scale and the synoptic scale. Horizontal dimensions 
generally range from around 5 km to 1,000 km. 
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Microscale A term used in meteorology to describe weather systems with a scale 
smaller than mesoscale. Horizontal dimensions are about 1 km or less. 

MISO Midwest Independent System Operator 
MM5 Mesoscale Model Version 5 
MSEPS Multi-Scheme Ensemble Prediction System 
MOS Model Output Statistics 
MSEPS Multi-Scheme Ensemble Prediction System 
NAM North American Model 
NCAR National Center for Atmospheric Research 
NCEP National Centers for Environmental Prediction 
NDFD National Digital Forecast Database 
NMC National Meteorological Center 
NOAA National Oceanographic and Atmospheric Administration 
NOGAPS Navy Operational Global Prediction System 
NWP Numerical Weather Prediction 
NWS National Weather Service 
NYISO New York Independent System Operator 
OASIS Open Access Same-time Information System 
PG&E Pacific Gas and Electric Company 
PIRP Participating Intermittent Resource Program 
PJM Pennsylvania-Jersey-Maryland Interconnection 
RADAR Radio Detection and Ranging 
RLS Recursive Least Square 
RMSE Root-Mean Square Error 
RTFDDA Real-Time Four-Dimensional Data Assimilation 
RUC Rapid Update Cycle 
SCADA Supervisory Control and Data Acquisition 
SCE Southern California Edison 
SMLR Screening Multiple Linear Regression 
SMUD Sacramento Municipal Utility District 
SVM Support Vector Machine 
UCAR University Corporation for Atmospheric Research 
VDRAS Variational Doppler RADAR/LIDAR Data Assimilation System 
WEPROG Weather and Wind Energy PROGnosis (Danish Company) 
WPF Wind Power Forecasting 
WPMS Wind Power Management System 
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WRF Weather Research and Forecasting 
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Appendix A: Numerical Weather Prediction Models 
 

Numerical Weather Prediction (NWP) models are complex computer programs that use 
current weather conditions as input into mathematical models of the atmosphere to 
produce meteorological information for future times at given positions and altitudes. 
The horizontal domain of a model is either global, covering the entire Earth, or regional, 
covering only part of the Earth. Regional models are also known as limited-area models. 

The mathematical equations that NWP models use are nonlinear and are impossible to 
solve exactly. Therefore, numerical methods obtain approximate solutions. Different 
models use different solution methods. Some global models use spectral methods for the 
horizontal dimensions and finite difference methods for the vertical dimension, while 
other global models and regional models usually use finite difference methods in all 
three dimensions. 

This appendix gives an introduction to major NWP models as well as a matrix that 
compares these models side by side. For more in-depth information, please refer to the 
NWP models page on UCAR’s website. 

 

A.1 Introduction to Major NWP Models 
 

• Eta/NAM 

The Eta model is a grid point type regional model. Its horizontal resolution is 12 km 
and its vertical resolution is 60 layers. The Eta model was developed by Yugoslavian 
Zavisa Janjic and Fedor Mesinger in the 1970s for numerical weather prediction and 
a version became operational in Yugoslavia in 1978. In the mid-1980s, both modelers 
arrived at the National meteorological Center (now NCEP), where Janjic developed 
the core physics parameterizations. Further development has been a team effort 
involving numerous scientists, primarily at NCEP. 

The ETA model took on its new name as the North American Mesoscale (NAM) 
model in January 2005 with no model change at that time. 

 

• GFS 

GFS stands for the Global Forecast System. The predecessor to the GFS was 
developed experimentally during the late 1970s and implemented as the global 
forecast model at the National Meteorological Center (NMC, now NCEP) in 1981.  
Since then, the GFS model has undergone a few major upgrades. 

Currently, the GFS is run four times a day (00 UTC, 06 UTC, 12 UTC, and 18 UTC) 
out to 384 hours. The initial forecast resolution was changed on May 31, 2005 to T574 
(equivalent to about 27-km grid point resolution) with 64 levels out to 8 days. At 
later forecast times, the GFS has a resolution of T190 (equivalent to about 80-km 
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resolution) and 64 levels beyond to day 16. All GFS runs get their initial conditions 
from the Gridpoint Statistical Interpolation (GSI) global data assimilation system 
(GDAS) as of May 1, 2007, which is updated continuously throughout the day. 

 

• RUC 

The Rapid Update Cycle (RUC) is an operational atmospheric prediction system that 
consists primarily of a numerical forecast model and an analysis system to initialize 
the model. The RUC was designed to provide accurate short-range (0- to 12-hour) 
numerical forecast guidance for weather-sensitive users. The RUC runs at the 
highest frequency of any forecast model at the National Centers for Environmental 
Prediction (NCEP), assimilating recent observations to provide very high frequency 
updates of current conditions and short-range forecasts. 

The RUC is primarily used for 1) making short-range forecasts; 2) monitoring current 
conditions with hourly analyses; and 3) evaluating trends of longer-range models. 

 

• MM5 

The MM5 (Mesoscale Model, Version 5) is the fifth-generation mesoscale model 
developed by the National Center for Atmospheric Research (NCAR) and the 
Pennsylvania State University. The original version was built in the 1970s and has 
undergone improvements to evolve into the MM5 used today. 

The MM5 is similar to other grid point models, such as Eta. However, there are two 
major differences: 1) since the MM5 is a mesoscale model, it runs at a finer resolution 
than most other models. Therefore, its output better depicts mesoscale features than 
regional models and global models; 2) The MM5 is a non-hydrostatic model, which 
means that it includes a prognostic equation for vertical motion. This enables it to 
directly include buoyancy processes and dynamic pressure perturbations. 

The MM5 is the Air Force’s fine-scale meteorological model of choice. 

 

• NOGAPS 

The NOGAPS (Navy Operational Global Prediction System) forecast model is a 
global model that is spectral in the horizontal and energy-conserving finite 
difference (sigma coordinate) in the vertical. The model top pressure is set at 1 hPa; 
however, the first velocity and temperature level is approximately 4 hPa. The 
variables used in dynamic formulations are vorticity and divergence, virtual 
potential temperature, specific humidity, surface pressure, skin temperature, and 
ground wetness. 

In September 2002, NOGAPS 4.0 was increased in resolution from T159L24 to 
T259L30, an increase in equivalent grid point resolution from 0.75 to 0.5 degrees. 

 

• COAMPS 

The COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) forecast 
model is a non-hydrostatic regional model uses gridpoints in the horizontal and a 
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terrain-following coordinate (sigma-Z) in the vertical. The model top height is set at 
31.50 km (approximately 10 hPa). 

In August, 2001, COAMPS was upgraded to version 3.0. The primary change was an 
increase in the number of vertical levels from 18 to 24. When COAMPS was further 
upgraded to version 3.1, the number of model levels was increase to 30. 

The operational COAMPS 3.1 is run in nine different regions, usually with an 81-km 
outer nest and a 27-km inner nest (sometimes a third 9-km inner nest), except for SW 
Asia region, where triple nesting from 54-km to 18-km to 6-km is performed. The 
boundary conditions to the outer nest are provided by the global NOGAPS model, 
interpolated to COAMPS vertical resolution. 

 

• GEM Regional/GEM Global 

GEM is an acronym that stands for Global Environmental Multiscale. GEM Regional 
is a short-range forecast model. It produces 48-hour forecasts twice daily (from 00 
UTC and 12 UTC data). The model uses a 3D finite difference on an Arakawa-C 
staggered grid in the horizontal, and on an Arakawa-A grid in the vertical. The GEM 
regional model contains a high-resolution core covering North America and adjacent 
oceanic areas. The model executes on a 575x641 variable-resolution latitude-
longitude global grid, of which 432x565 grid points are found in the uniform-
resolution core. 

GEM global is a grid point model having uniform resolution in latitude (0.30 degree) 
and in longitude (0.45 degree). This mesh can be modified so that the resolution 
becomes variable in both directions. GEM global is a medium-range forecast model. 
It produces 240-hour forecasts at 00 UTC and 144-hour forecasts at 12 UTC. 
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The characteristics of the major operational NWP models can be found in Table A1. 

 

Table A1. Major NWP Models - Model Structure and Dynamics 

Module Model Type Vertical 
Coordinate 

System 

Horizontal 
Resolution 

Vertical 
Resolution 

Domain 

new NAM 
(WRF-
NMM) 

Grid Point, 
Non-
Hydrostatic 

Sigma-pressure 
hybrid 

12 km 60 Layers Regional 

NAM (Eta) Grid point Eta 12 km 60 Layers Regional 

GFS Spectral Sigma-pressure 
hybrid 

T574 64 Layers Global 

RUC Grid Point Hybrid 
Isentropic-
Sigma 

13 km 50 Layers Regional 

AFWA 
MM5 

Grid Point Non-
hydrostatic 
Sigma 

45 km, 15 
km, and 5 
km 

42 Layers Mesoscale 

NOGAPS Spectral Hybrid 
Sigma/Pressure 

T239, 
Physics, 55 
km 

30 Layers Global 

COAMPS Grid Point, 
Non-
Hydrostatic 

Terrain-
following 
Sigma 

81 km 
(outer nest), 
27 km 
(inner nest) 

30 Levels Regional 

GEM 
Regional 

Variable 
Resolution 
Grid Point 

Generalized 
Sigma 

15 km 
Regional 
Grid 

58 Levels Regional 

GEM 
Global 

Global Grid 
Point 

Generalized 
Sigma 

 58 Levels Global 

ECMWF Spectral, 
Semi-
Lagrangian 

Hybrid sigma-
pressure 

T1279 91 Layers Global 
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