

Four Sub-Teams with a 10x10x10 mission

• 1. Communication - Pico Radio & TinyOS for networking of devices

• Low-power and low-cost radio platforms, supported by appropriate operating systems, for ad hoc sensor and actuator network applications.

• 2. Controls - Applications on a prototype of New Thermostat

• Easy-to-use "thermostat" that can act as an automatic proxy to optimize energy savings versus comfort under varying energy price conditions.

3. Sensors - Relation to New Meter (Voltage/Current)

• Low-cost wireless, passive and non-intrusive current and voltage sensing for application to the next generation meter and other devices.

• 4. **Power Supply - Energy Scavenging (important for Temp Nodes)**

• Infinite life power source that scavenges energy from the environment. Possible energy sources include solar, vibration, air flow, and hybrid.

Bus Speed	8 MHz		
RAM	2 Kb		
Program Space	60 Kb		
External Flash	512 Kb		
Serial Communications	DIO,SPI,I2C,UAR		
	Т		
Current (active w/ radio on)	19 mA		
Current (sleep)	2.4 μ Α		
Voltage	2.0-3.6V		
Radio			
Frequency	2400-2483 MHz		
Data rate	250 kbps		
Output Power	-25 to 0 dBm		
Antenna	Microstrip		
	Inverted-F		
Humidity Sensor			
Humidity Accuracy	3.5% RH		
Temperature Accuracy	0.5 °C		
Electromechanical			
Battery	2xAA, 2/3A		

Ultra Low Power Node {called 'Telos'}

16-bit microcontroller has a sub 1mA sleep state and can rapidly wakeup from sleep in under 6ms.

Telos operates down to 1.8V to extract as much energy as possible from the battery source.

However!! Need Much Low Power Radios

 Why is low power necessary? - Volume is dominated by energy scavenging/storage devices

Battery power density: 100μW/cm³/year Solar power density: (10μW/cm²-10mW/cm²) Vibrational power density: <300μW/cm³

Power consumption determines sensor node volume.

For a 1cm³ node, 1% DC, need P_{transceiver} <1mW

RF MEMS: A new opportunity

- Substantial work in academia in RF MEMS (UC Berkeley, Michigan, etc.)
- Heavy industrial research in BAW resonators: (Infineon, Agilent, ST Microelectronics, etc.)
- Agilent FBAR resonators: building block of Tx filters and duplexers
- Active resonator area: AIN piezoelectric membrane.
 Isolation chamber bulk-micromachined under membrane

Benefits:

- High Quality-Factor passive structures
- Passive RF frequency reference
- MEMS/CMOS co-design

◀ 0 ▶

T 10.2 mV

0.0 s

<u>↑</u>_____

More (1of 2)

Delete

0024

Н 5.00 дз/

envelope to demodulate signal

Receiver Implementation

- The combination of RF MEMS/Super-regenerative CMOS architecture yields low power consumption and high integration...
- Arrays of MEMS resonators will ultimately allow simultaneous access to many bands for interference avoidance, fading immunity

 Using these techniques, a 1mW, fully integrated, 1mm² transceiver for wireless sensor networks is feasible and will enable much lower power 'motes'

2. DR Thermostat and Controls Group DREAMS: Demand Response Electrical Adaptive Management System

Controller (top left of previous slide)

Adaptive Precooling Strategy

Typical precooling strategies use a fixed cooling start time which can lead to overcooling or undercooling.

The Adaptive Controller DR precooling strategy uses a dynamic cooling starting time using a Learning Algorithm:

Dynamic Electrical Power Prices

Viously our inputs were rigid – E.g. price per price periods nonvariable Next we will use dynamic prices for Thermostat control strategy

- Price response to load, which is affected by weather and customer usage.
- Basic prices schedule changes with season.
- "Critical peak" price that can be dispatched during peak periods (high and medium price) for up to 50 hours each year, with day ahead notice.

PDA InterfaceProxy

Currently Adaptive Controller runs on PDA

- Receives and displays indoor temperature for two indoor zones, outdoor temperature, and relative humidity from wireless motes
- Displays energy usage of loads, price, cost per day and per month
- Sends actuation signal to fan or "AC unit

Next steps:

- Usability testing
- Learning algorithms

Passive Proximity AC voltage and Current Sensing

Sub-Team 3: Dick White and Students EECS and BSAC

Linearity Test – Voltage Sensor

Measured on zipcord with pickup from two 4-inch brass sleeves on insulated wires (HP 973A DMM)

MEMS – noncontact measurement of AC currents

MEMS Advantage

arrays allow correction for position errors

<u>Microfab</u>

thin films

arrays of unreleased sensors

single cantilever released

Wireless Current Sensor

Piezo Sensor

Wireless Mote

Wireless Metering Outlet

Chassis

Operation

Metering Data

Sub-Team 4. Power Sources Critical Enabling Technology to achieve "No replaceable batteries" on the nodes

- Possibilities include:-
- Photovoltaic (Solar)
- Vibrations
- Air Flow
- Temperature Gradients
- Pressure Gradients
- Human Power
 - MIT shoe-insert project
 - FreePlay wind-up products

Sources

- •HVAC ducts
- •Raised Floors
- Motors
- Large windows
- •Mount under wooden staircase

•P ~ M •P ~ A² •P ~ $1/\omega$

PZT-shims with W-mass

•Early work ~ 800 μ W/cm³ at 5 m/s² (on a clothes dryer!)

Recent successes

TinyTemp Node on stairsMEMS piezo bender

Residential Vibration Sources

Vibration Source	Frequency of Peak (Hz)	Peak Acceleration (m/s ²)
Kitchen Blender Casing	121	6.4
Clothes Dryer	121	3.5
Door Frame (just after door closes)	125	3
Small Microwave Oven	121	2.25
HVAC Vents in Office Building	60	0.2-1.5
Wooden Deck with People Walking	385	1.3
Bread Maker	121	1.03
External Windows (size 2ftx3ft) next to a Busy Street	100	0.7
Notebook Computer while CD is Being Read	75	0.6
Washing Machine	109	0.5
Stairs leading to the Second Story of a Wood Frame Office Building	28 to 100	0.2
Refrigerator	240	028

DESIGN FLOW

In-progress tunableresonance device design

- Bracket fashioned from machined aluminum
- Load is applied by a setscrew assembly
- Proof mass is mounted using a tiny screw
- Resonance range can be adjusted by changing proof mass or shim thickness

Microfabrication

Base layer of Si/STO (SrTiO₃) provided by Motorola

•Si provides ease of fabrication

•STO enables epitaxial growth

SRO (StRuO₃) PZT (Pb_{1.15}Zr_{0.53}Ti_{0.47}O₃) deposited via PLD

Deposition and patterning

Edwards electron beam evaporator

* Ti: 10-15 nm (for adhesion purposes)

* Pt: 150-200 nm

→ Pt thickness will be varied to function as elastic layer

Initial etching

Ar lon mill

* 5 nm/min @ 0.25 mA

Just starting to be etched...

End-on view of one MEMS cantilever

View from above of MEMS cantilevers...

"Potential Breakthroughs" "The PicoCube"

Early thinking about integrated device ~1 cm³

- 3-D wiring
- 4 sides with solar panels
- 2 sides with sensors
- On-board recharg. battery
- On-board piezo electric generation

$\bullet \geq 3$ Separate **Components** ◆ 1 Bus

Overall

- + Modular Design
- + Simplifies Connection
- Steals a surface
- Component packing eats significant space

