

Demand Response (DR) Enabling Technology Development (ETD) Project

Gaymond Yee DR ETD Project Manager Ron Hofmann DR Program Advisor June 2, 2005

8:30am	Introduction and Discussion of the DR ETD Project Gaymond Yee and Ron Hofmann
9:00am	Research Opportunity Notices and How to Submit Proposals <i>Gaymond Yee</i>
9:45am	Morning Break
10:00am	DR ETD Commercialization Plan <i>Ron Hofmann</i>
10:30am	"New Thermostat, New Temperature Node, and New Meter" UC Berkeley Research Team

Noon- 1:45pm	Posters and demonstrations on display
12:30pm -1:45pm	Lunch (handouts with locations of nearby restaurants)
1:45pm	"California Demand Response Business Network"
	Utility Integrated Solutions
2:45pm	Afternoon Break
3:00 pm	"Network Security Architecture"
	CyberKnowledge, UC Berkeley
4:00pm	"Service Based Universal Application Interface"
	Berkeley Wireless Research Center
4:30pm	Adjourn

Purpose of This Workshop

- Review Past Research Opportunity Notices
- Describe the proposal submittal and review process
- Present progress and results of the 4 funded research projects
 - 1. New Thermostat, New Temperature Node, and New Meter
 - 2. California Demand Response Business Network
 - 3. Network Security Architecture
 - 4. Service Based Universal Application Interface

Background

CA energy crisis of 2000-2001

- Market power (Enron, et al)
- Aging fossil fuel plants (pollution)
- Flaws in deregulation (AB 1890)
- Disconnect between wholesale and retail prices

Supply approach (build more plants)

Demand approach (load as a resource)

Electric Power Industry In California

- Energy companies (Enron, Calpine)
- CAISO (California Independent System Operator) balances supply and demand
- UDCs (Utility Distribution Companies manage local distribution systems)
 - IOUs (investor owned utilities, e.g., PG&E)
 - Munis (publicly owned utilities, e.g., SVP)
- Regulators (e.g., FERC, CPUC, CEC)

Regulatory Agencies

FERC http://www.ferc.fed.us/

• Regulates the transmission and wholesale sales of electricity in interstate commerce

CPUC http://www.cpuc.ca.gov/

- Regulates privately-owned utilities in CA
- CEC http://www.energy.ca.gov/
 - Created in 1975 for siting electric power plants
 - Responsible for standards & policy analysis

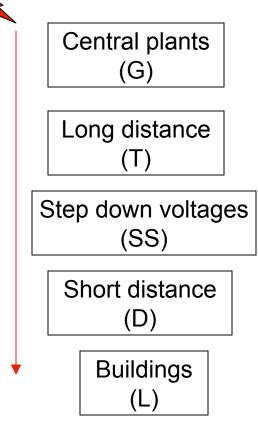
Brief History of Recent California Electric R&D

- Investor Owned Utilities (until 1996)
- EPRI (created by utilities in 1973)
- CIEE (funded by utilities starting in 1989 to manage energy efficiency R&D)
- PIER (created in 1996 by deregulation [AB1890] and initially funded in 1998)
- PIER <u>http://www.energy.ca.gov/pier/</u>
- PIER has ~\$60 MM/year through 2012

PIER R&D Areas

- Environmentally-Preferred Advanced Generation (EPAG)
- Buildings End-Use Energy Efficiency
- Industrial/Agricultural/Water End-Use Energy Efficiency (IAW)
- Renewable Energy
- Energy Related Environmental Research
- Energy Systems Integration (ESI)

- Improved Efficiency and Reliability of the Transmission System (T&D)
- Distributed Energy Resources Systems Integration (DER)
- Strategic and Enabling Technologies (e.g., storage, seismic, tools for market analysis)
- Demand Response to Electricity Prices and System Contingencies (DR)


What Is DR?

- Demand response (DR) for this project is the ability of electricity users to respond "automatically" to time- and locationdependent price and contingency signals (that have varying amplitude and duration) to reduce/shift loads.
- DR is different from energy efficiency (EE), e.g., transient vs. permanent

DR Involves the Entire Power Delivery System

- Generation (G)
- Transmission (T)
- Substations (SS_T)
- Sub-transmission
- Substations (SS_D)
- Distribution (D)
- Local transformers

Loads (L)

PIER DR Program

- Is there DR potential in CA's existing large commercial/industrial facilities?
- What enabling technologies need to be developed to deploy DR statewide?
- Can we learn lessons from other states?
- Can the CAISO use DR to help manage future electricity imbalances?

LC&I Potential

- Large Commercial and Institutional (LC&I) DR Demonstrations and Case Studies (Mary Ann Piette, LBNL)
 - Stake in the ground study to establish stateof-the-art DR capabilities and R&D needs
 - Send a dynamic tariff to LC&I buildings
 - Determine automatic DR capability
 - Report results in a form that will help make policy and R&D decisions possible

Enabling Technologies

- Wireless communications
- MEMS sensors
- Network management
- Systems integration
- Low-cost packaging
- Energy scavenging and storage
- Real-time operating systems

Lessons Learned

A Case Study of Niagara Mohawk's RTP Tariff (Chuck Goldman, LBNL)

- Characterize customer response to and satisfaction with a RTP tariff in a retail competition environment
- Assess interactions between RTP and ISO/utility DR programs
- Provide input to CA regulators/stakeholders developing DR and RTP options

CAISO Requirements

- Develop a DR R&D agenda for the CAISO to identify
 - how responsive loads could increase power system reliability and adequacy
 - what behaviors are desirable
 - what reliability services (ancillary services) responsive loads could provide

DR ETD Project

• CEC PIER Funded Project

- Project approved June 2002
- Present funding: \$5.5M to March 31, 2007
- Purpose of funding is to develop enabling technologies for a state-wide demand responsive electric power delivery system with "10/10" objectives
 - 10 times the capabilities and 1/10th the cost
 - Create disruptive technology
- Leverage R&D spending by other institutions
 Multi-disciplinary and collaborative research

- Don Aumann (CA Lighting Tech. Ctr, lighting, HVAC, and power supplies)
- Charles Glorioso (Davis Instruments, communications, thermostats, home automation)
- Joe Hughes (EPRI, industry standards)
- **Roger Levy** (DRRC, business processes)
- **Belvin Louie** (PG&E, meters)
- Mark Martinez (SCE, load control programs)
- **Terry Mohn** (Sempra, communications, industry standards)
- **Steve Phillips** (PG&E, IT systems and integration)
- Mary Ann Piette (DRRC/LBNL, buildings, energy monitoring)

California Institute for **P** Energy and Environment (CIEE)

- DR ETD Project: Technical coordination, project administration, and contract management of funded research
- Unit of the Office of Research, Academic Affairs Division of the Office of the President, University of California (UCOP)
- Located at 1333 Broadway, Suite 240 Downtown Oakland