Sensor Network Platform
DR Application

Presented by Prof. Paul Wright
On behalf of Jana van Greunen and Prof. Jan Rabaey

. “‘Berkeley Wireless]
Sensor Network Platform (&) 48 Research Center

An Analogy

* When you want to write a letter you want to
fire-up Microsoft word and get going...

* You don’t care 1f you are using an HP laptop,

a Del

, a Sony, an IBM....

e You don’t even care 1f it’s a Mac

e So...

this talk focuses on the Applications

that any home might want to run on any type
of mote or hardware...

Sensor Network Platform

Sensor Network Platform (SNP)

 Remove burden from programmers by:
— Providing a clean programming paradigm
— Abstracting distributed implementation
— Mapping application onto network at runtime (future work)

Application Application Application Application

r . e —— . _1}

Sensor Network Platéfom%a I

Abstraction
(middleware)

b Lo i execution

L

gl

Note: Inputs/outputs are inherently “distributed” i

f
»d Research Center |

et .79 . ';Berkeley Wireless
Sensor Network Platform P

SNP and DR Project Goals

* Provide a unifying framework that makes application
programming easier

Enable code reuse and modular applications

Capability discovery

Investigate SNP feasibility
— Implement a Demand Response (DR) application

— Use multiple hardware platforms (many mote types)

Sensor Network Platform

Assumptions

Nodes share a common notion of time
— To send data on regular basis

— To decide when to sample the environment, or to actuate

Nodes have location data
— Nodes know their own locations

— Nodes know the locations of services they wish to use / can interpret
semantic locations, e.g. kitchen, living room

(Note: time and location is called scope)

From the applications’ perspective, addressing 1s geographic
(this may be translated by SNP into underlying addressing)

__ Berkeley Wireless

Research Center

e

Sensor Network Platform

Platform Architecture

 The SNP has a service-oriented architecture
— Decouples function from implementation
— Decouples service provider from consumer in time/ space

e What is a Service?

— A function that is well-defined, self-contained, and does not
depend on extemal context or state (For example my thermostat 1s
a “consumer” because it “uses’ the heating provider in my
basement.)

Request

\4

Service R Service
eSponse .
Consumer p Provider

*White paper: “Sensor Networks Services Platform,” M. Sgroi, A. Wolisz, J. \';Berkeley\;\f' ol
Ireless

Research Center

Sensor Network Platform

Service Invocation

* Invocation starts service execution (instantiation)

— Arguments: scope & service type

— Scope is translated to underlying addressing & routing

« Example: Heat service invocation

Request Invoke
“Heat:ON” “Heat:ON”
T T
Thermo- T Sensor T —— Heat
stat App Network Service
1
Result) Res.ponse
“Heat:Success” Heat:Succes

Sensor Network Platform

__ Berkeley Wireless |

Research Center

Service Invocation Structure (e.g. in
TinyOS running on the nodes)

 Header

— Requested “provider service”; originating “consumer service”

— Destination scope (e.g I need heat in the kitchen at 6pm);
originating scope (e.g From my thermostat near the front door)

* Body
— Set of named functions: (x,y...) =f(a, b,...)

* E.g. choosing from a number of possible actions/modes — E.g
“give me current price” or “give me total usage over period t,>t,”

— Upon invocation/request the functions’ arguments are specified

— Upon response/result, the functions’ results are filled in - 8
e N 7 @ gl

. “‘Berkeley Wireless]
Sensor Network Platform V) Research Center

Another specific example...

« An application is a fask graph of services used and some computation

Day/Night
sensor

A 4

nvoke/data

Motion
sensor

light cntl

Invoke/data

Light Control Service

Light
relay

v

« Applications become services when they are registered in the repository

« Application may export a “Service API”

« Analogy to object-oriented programming
— Function description (computation) with inputs/outputs

Sensor Network Platform

__ Berkeley Wireless |
' Research Center

S

Capability Repository (CR)

* Repository of all available services
— Services register with the CR by exporting a standard API
— Applications query the CR to discover new services

e Service API contains
— A unique ID (within a given scope)
— A set of “callable” functions with typed arguments & results
— List of hardware/services used

— Analogy to a ‘remote procedure call’

* Exampleentry: | ., 1o Detector

Type: service
Callable function

bool = AnyoneThere(location, time)
Hardware Used: ADC, temp sense, Metion Service

&

- “‘Berkeley Wireless]
Sensor Network Platform v Research Center _|

Implementation

Prototype to evaluate SNP’s:
— Programming paradigm
— Modularity & portability (using more than one network)

 Hardware: Mica2 from Crossbow ++ TelosB from Mote1v
o Software: The SNP is written in nesC*

* The application 1s written just once --- but the middleware
1s customized for the hardware & software of each “mote”

« Application: Demand Response
— 4 Bedroom house
— Demand-driven electricity prices are provided by a price sensor

— House 1s outfitted with a smart thermostat, price indicators on
appliances, and appliance switches; these are controlled by a

sensor network 4

gl

. Berkeley Wireless |
Research Center _

Sensor Network Platform *NesC is the language developed for TinyOS&g

Hardware & setup

Node Type Application
1 Mica2 Price Indicator Service
2 Mica2 Temperature Sensor Service
HVAC Control App
3 Mica2 Comfort Sensor (smart t-stat)
4 Mica2 Desired Temperature Service
5 TelosB Price Indicator Control App
6 TelosB Price Service
7 TelosB Display
Bridge Service
8 Mica2 Display
Bridge Service
9 Mica2 HVAC Switch Service
X M/T Temperature/Humidity
Service to test discovery

Sensor Network Platform

4 (C

7
. her‘keiey Wireless

Research Center

4

Lol

Qe

Central Capability Repository

* Repository 1s stored on the laptop & starts empty
» Applications/services register on instantiation
« Repository is soft-state (entries older than 25s are deleted)

« Supports 5 operations: registerservice()*, queryAIll()*,
queryService()*, queryScope(service), and
queryNetwork(service)

» *E.g “I am the price indictor service, here I am”
» *E.g “Who else is out there?”
» *E.g “Query the heater to see if it’s binary or will take temp. settings”

* Service Discovery:
— On start-up, applications send gueryAll messages
— For a particular service, gueryService returns the invocation format

— Applications periodically query the CRS for new services b

. “‘Berkeley Wireless]
Sensor Network Platform V) Research Center

Findings

e Pros

— Service-oriented
platform enables
application code to be
portable to a wide range
of platform types

— SNP 1s lightweight
enough to be installed
on resource limited
networks

Cons
— This design lacks:

» Personalization to members
of the household

— Service oriented paradigm
cannot provide:

« Automatic fault recovery

 Flexible/automatic
application deployment for
each node — need to hand-
load code on motes (planned
in future work)

Sensor Network Platform

Conclusion

* Presented the Sensor Network (Service) Platform (SN {S}P)

— A service-oriented abstraction for sensor network programming
— Enables creation of modular code

* Achievements
— Implemented the SNSP platform on Mica2 and TelosB motes

— Demonstrated that the SNSP does enable application code to be
portable (multi-platform demonstration)

* Findings/future work
— Basic services and be run on resource limited networks
— The SNP needs more flexible deployment beyond “hand loading”

. “‘Berkeley Wireless]
Sensor Network Platform v Research Center

