
Sensor Network Platform 1

Sensor Network Platform
DR Application

Presented by Prof. Paul Wright
On behalf of Jana van Greunen and Prof. Jan Rabaey

Sensor Network Platform 2

An Analogy

• When you want to write a letter you want to
fire-up Microsoft word and get going…

• You don’t care if you are using an HP laptop,
a Dell, a Sony, an IBM….

• You don’t even care if it’s a Mac
• So … this talk focuses on the Applications

that any home might want to run on any type
of mote or hardware…

Sensor Network Platform 3

Sensor Network Platform (SNP)
• Remove burden from programmers by:

– Providing a clean programming paradigm
– Abstracting distributed implementation
– Mapping application onto network at runtime (future work)

Application Application Application Application

Sensor Network Platform

App App …

Centralized “virtual uni-processor” abstraction
Note: Inputs/outputs are inherently “distributed” in space

Abstraction
(middleware)

Mapping &
execution

Sensor Network Platform 4

SNP and DR Project Goals

• Provide a unifying framework that makes application
programming easier

• Enable code reuse and modular applications

• Capability discovery

• Investigate SNP feasibility
– Implement a Demand Response (DR) application
– Use multiple hardware platforms (many mote types)

Sensor Network Platform 5

Assumptions

• Nodes share a common notion of time
– To send data on regular basis
– To decide when to sample the environment, or to actuate

• Nodes have location data
– Nodes know their own locations
– Nodes know the locations of services they wish to use / can interpret

semantic locations, e.g. kitchen, living room

• (Note: time and location is called scope)
• From the applications’ perspective, addressing is geographic

(this may be translated by SNP into underlying addressing)

Sensor Network Platform 6

Platform Architecture

• The SNP has a service-oriented architecture
– Decouples function from implementation
– Decouples service provider from consumer in time/ space

• What is a Service?
– A function that is well-defined, self-contained, and does not

depend on external context or state (For example my thermostat is
a “consumer” because it “uses” the heating provider in my
basement.)

Service
Provider

Service
Consumer

Request

Response

*White paper: “Sensor Networks Services Platform,” M. Sgroi, A. Wolisz, J. Rabaey

Sensor Network Platform 7

Service Invocation

• Invocation starts service execution (instantiation)
– Arguments: scope & service type
– Scope is translated to underlying addressing & routing

• Example: Heat service invocation

Request
“Heat:ON”

Result
“Heat:Success”

Response
“Heat:Success”

Invoke
“Heat:ON”

SNP SNP
Sensor

Network
??

Heat
Service

Thermo-
stat App

Sensor Network Platform 8

Service Invocation Structure (e.g. in
TinyOS running on the nodes)
• Header

– Requested “provider service”; originating “consumer service”
– Destination scope (e.g I need heat in the kitchen at 6pm);

originating scope (e.g From my thermostat near the front door)

• Body
– Set of named functions: (x,y…) = f(a, b,…)

• E.g. choosing from a number of possible actions/modes – E.g
“give me current price” or “give me total usage over period t1>t2”

– Upon invocation/request the functions’ arguments are specified
– Upon response/result, the functions’ results are filled in

Sensor Network Platform 9

Another specific example…
• An application is a task graph of services used and some computation

• Applications become services when they are registered in the repository

• Application may export a “Service API”
• Analogy to object-oriented programming

– Function description (computation) with inputs/outputs

Light Control Service

Motion
sensor

Day/Night
sensor Light

relay

Invoke/data

Invoke/data

Invoke(data)/ackpeople pres
light cntl

Sensor Network Platform 10

Capability Repository (CR)
• Repository of all available services

– Services register with the CR by exporting a standard API
– Applications query the CR to discover new services

• Service API contains
– A unique ID (within a given scope)
– A set of “callable” functions with typed arguments & results
– List of hardware/services used
– Analogy to a ‘remote procedure call’

• Example entry: People Detector
Type: service
Callable function

bool = AnyoneThere(location, time)
Hardware Used: ADC, temp sense, Motion Service

Sensor Network Platform 11

Implementation
• Prototype to evaluate SNP’s:

– Programming paradigm
– Modularity & portability (using more than one network)

• Hardware: Mica2 from Crossbow ++ TelosB from Moteiv
• Software: The SNP is written in nesC*
• The application is written just once --- but the middleware

is customized for the hardware & software of each “mote”
• Application: Demand Response

– 4 Bedroom house
– Demand-driven electricity prices are provided by a price sensor
– House is outfitted with a smart thermostat, price indicators on

appliances, and appliance switches; these are controlled by a
sensor network

*NesC is the language developed for TinyOS

Sensor Network Platform 12

Hardware & setup

1 2

3 4
5

8

9

7

6

Node Type Application
1 Mica2 − Price Indicator Service
2 Mica2 − Temperature Sensor Service

− HVAC Control App
3 Mica2 − Comfort Sensor (smart t-stat)
4 Mica2 − Desired Temperature Service
5 TelosB − Price Indicator Control App
6 TelosB − Price Service
7 TelosB − Display

− Bridge Service
8 Mica2 − Display

− Bridge Service
9 Mica2 − HVAC Switch Service
x M/T − Temperature/Humidity

Service to test discovery

Sensor Network Platform 13

Central Capability Repository
• Repository is stored on the laptop & starts empty
• Applications/services register on instantiation
• Repository is soft-state (entries older than 25s are deleted)
• Supports 5 operations: registerservice()*, queryAll()*,

queryService()*, queryScope(service), and
queryNetwork(service)

» *E.g “I am the price indictor service, here I am”
» *E.g “Who else is out there?”
» *E.g “Query the heater to see if it’s binary or will take temp. settings”

• Service Discovery:
– On start-up, applications send queryAll messages
– For a particular service, queryService returns the invocation format
– Applications periodically query the CRS for new services

Sensor Network Platform 14

Findings

• Pros
– Service-oriented

platform enables
application code to be
portable to a wide range
of platform types

– SNP is lightweight
enough to be installed
on resource limited
networks

• Cons
– This design lacks:

• Personalization to members
of the household

– Service oriented paradigm
cannot provide:

• Automatic fault recovery
• Flexible/automatic

application deployment for
each node – need to hand-
load code on motes (planned
in future work)

Sensor Network Platform 15

Conclusion
• Presented the Sensor Network (Service) Platform (SN{S}P)

– A service-oriented abstraction for sensor network programming
– Enables creation of modular code

• Achievements
– Implemented the SNSP platform on Mica2 and TelosB motes
– Demonstrated that the SNSP does enable application code to be

portable (multi-platform demonstration)

• Findings/future work
– Basic services and be run on resource limited networks
– The SNP needs more flexible deployment beyond “hand loading”

