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An Analogy

* When you want to write a letter you want to
fire-up Microsoft word and get going...

* You don’t care 1f you are using an HP laptop,

a Del

, a Sony, an IBM....

e You don’t even care 1f it’s a Mac

e So...

this talk focuses on the Applications

that any home might want to run on any type
of mote or hardware...
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Sensor Network Platform (SNP)

 Remove burden from programmers by:
— Providing a clean programming paradigm
— Abstracting distributed implementation
— Mapping application onto network at runtime (future work)
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SNP and DR Project Goals

* Provide a unifying framework that makes application
programming easier

Enable code reuse and modular applications

Capability discovery

Investigate SNP feasibility
— Implement a Demand Response (DR) application

— Use multiple hardware platforms (many mote types)
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Assumptions

Nodes share a common notion of time
— To send data on regular basis

— To decide when to sample the environment, or to actuate

Nodes have location data
— Nodes know their own locations

— Nodes know the locations of services they wish to use / can interpret
semantic locations, e.g. kitchen, living room

(Note: time and location is called scope)

From the applications’ perspective, addressing 1s geographic
(this may be translated by SNP into underlying addressing)
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Platform Architecture

 The SNP has a service-oriented architecture
— Decouples function from implementation
— Decouples service provider from consumer in time/ space

e What is a Service?

— A function that is well-defined, self-contained, and does not
depend on extemal context or state (For example my thermostat 1s
a “consumer” because it “uses’ the heating provider in my
basement.)

Request

\4
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Service Invocation

* Invocation starts service execution (instantiation)

— Arguments: scope & service type

— Scope is translated to underlying addressing & routing

« Example: Heat service invocation

Request Invoke
“Heat:ON” “Heat:ON”
T T
Thermo- T Sensor T —— Heat
stat App Network Service
1
Result ) Res.ponse
“Heat:Success” Heat:Succes
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Service Invocation Structure (e.g. in
TinyOS running on the nodes)

 Header

— Requested “provider service”; originating “consumer service”

— Destination scope (e.g I need heat in the kitchen at 6pm);
originating scope (e.g From my thermostat near the front door)

* Body
— Set of named functions: (x,y...) =f(a, b,...)

* E.g. choosing from a number of possible actions/modes — E.g
“give me current price” or “give me total usage over period t,>t,”

— Upon invocation/request the functions’ arguments are specified

— Upon response/result, the functions’ results are filled in - 8
e N 7 @ gl
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Another specific example...

« An application is a fask graph of services used and some computation

Day/Night
sensor

A 4

nvoke/data

Motion
sensor

light cntl

Invoke/data

Light Control Service

Light
relay

v

« Applications become services when they are registered in the repository

« Application may export a “Service API”

« Analogy to object-oriented programming
— Function description (computation) with inputs/outputs
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Capability Repository (CR)

* Repository of all available services
— Services register with the CR by exporting a standard API
— Applications query the CR to discover new services

e Service API contains
— A unique ID (within a given scope)
— A set of “callable” functions with typed arguments & results
— List of hardware/services used

— Analogy to a ‘remote procedure call’

* Exampleentry: | ., 1o Detector

Type: service
Callable function

bool = AnyoneThere(location, time)
Hardware Used: ADC, temp sense, Metion Service

&
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Implementation

Prototype to evaluate SNP’s:
— Programming paradigm
— Modularity & portability (using more than one network)

 Hardware: Mica2 from Crossbow ++ TelosB from Mote1v
o Software: The SNP is written in nesC*

* The application 1s written just once --- but the middleware
1s customized for the hardware & software of each “mote”

« Application: Demand Response
— 4 Bedroom house
— Demand-driven electricity prices are provided by a price sensor

— House 1s outfitted with a smart thermostat, price indicators on
appliances, and appliance switches; these are controlled by a

sensor network 4
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Hardware & setup

Node Type  Application
1 Mica2 Price Indicator Service
2 Mica2 Temperature Sensor Service
HVAC Control App
3 Mica2 Comfort Sensor (smart t-stat)
4 Mica2 Desired Temperature Service
5 TelosB Price Indicator Control App
6 TelosB Price Service
7 TelosB Display
Bridge Service
8 Mica2 Display
Bridge Service
9 Mica2 HVAC Switch Service
X M/T Temperature/Humidity
Service to test discovery

Sensor Network Platform

4 ( C

7
. her‘keiey Wireless

Research Center

4

Lol

Qe



Central Capability Repository

* Repository 1s stored on the laptop & starts empty
» Applications/services register on instantiation
« Repository is soft-state (entries older than 25s are deleted)

« Supports 5 operations: registerservice()*, queryAIll()*,
queryService()*, queryScope(service), and
queryNetwork(service)

» *E.g “I am the price indictor service, here I am”
» *E.g “Who else is out there?”
» *E.g “Query the heater to see if it’s binary or will take temp. settings”

* Service Discovery:
— On start-up, applications send gueryAll messages
— For a particular service, gueryService returns the invocation format

— Applications periodically query the CRS for new services b
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Findings

e Pros

— Service-oriented
platform enables
application code to be
portable to a wide range
of platform types

— SNP 1s lightweight
enough to be installed
on resource limited
networks

Cons
— This design lacks:

» Personalization to members
of the household

— Service oriented paradigm
cannot provide:

« Automatic fault recovery

 Flexible/automatic
application deployment for
each node — need to hand-
load code on motes (planned
in future work)
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Conclusion

* Presented the Sensor Network (Service) Platform (SN {S}P)

— A service-oriented abstraction for sensor network programming
— Enables creation of modular code

* Achievements
— Implemented the SNSP platform on Mica2 and TelosB motes

— Demonstrated that the SNSP does enable application code to be
portable (multi-platform demonstration)

* Findings/future work
— Basic services and be run on resource limited networks
— The SNP needs more flexible deployment beyond “hand loading”
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